The Former Ford Distribution Site

Infrastructure Design Report

240002-X-X-X-XXX-RP-DBFL-CE-0001

November 2024

CONSULTING ENGINEERS

Sustainable **Futures**

Project Title:	The Former Ford Distribution Site		
Document Title:	Infrastructure Design Report		
File Ref:	240002-X-X-X-XXX-RP-DBFL-CE-0001		
Status:	P3 - Planning	Rev: 0	
	S - Issued		-

Status	Rev.	Date	Description	Prepared	Reviewed	Approved
P1	0	June 2024	Draft Issue	LR	GK	NJF
P1	1	June 2024	Issued for Section 32B	MLC	NJF	NJF
P3	0	Nov 2024	Issued for Planning	MLC	NJF	NJF

Disclaimer

This document has been prepared for the exclusive use of our Client and unless otherwise agreed in writing with DBFL Consulting Engineers no other party may use, make use of or rely on the contents of this document. The document has been compiled using the resources agreed with the Client and in accordance with the agreed scope of work. DBFL Consulting Engineers accepts no responsibility or liability for any use that is made of this document other than for the purposes for which it was originally commissioned and prepared, including by any third party or use by others of opinions or data contained in this document. DBFL Consulting Engineers accepts no information supplied by others and contained within this report. It is expressly stated that no in dependent verification of any documents or information supplied by others for this document has been made. DBFL Consulting Engineers has used reasonable skill, care and diligence in compiling this document and no warranty is provided as to the report's accuracy.

Copyright

The contents and format of this report are subject to copyright owned by DBFL Consulting Engineers unless that copyright has been legally assigned by us to another party or is used by DBFL Consulting Engineers under licence. This report may not be copied or used for any purpose other than the intended purpose.

Contents

1	INT	RODUCTION	. 4
	1.1	Background	. 4
	1.2	Location & Topography	. 4
	1.3	Proposed Development	. 5
2	SIT	E ACCESS AND ROAD LAYOUT	. 6
	2.1	Existing Access	. 6
	2.2	Proposed Vehicular Access	. 6
	2.3	Proposed Pedestrian and Cyclist Access	. 6
	2.4	Proposed Parking	. 6
3	FLC	DOD RISK	. 8
4	EXI	STING SERVICES AND UTILITIES	. 9
	4.1	General	. 9
	4.2	Surface Water Drainage	. 9
	4.3	Foul Sewer Drainage	. 9
	4.4	Water Supply	. 9
5	PR	OPOSED SURFACE WATER DRAINAGE	11
	5.1	Surface Water Policy	11
	5.2	Surface Water Strategy	11
	5.3	Sustainable Urban Drainage Systems (SUDS)	12
	5.4	Attenuation	13
	5.5	Design Standards	15
	5.6	Climate Change	15
	5.7	Flooding Provision	15
	5.8	Surface Water Quality Impact	16
	5.9	Interception	16

	5.10	Treat	ment Volume
	5.11	SuDS	and Drainage Network Maintenance17
6	PR	OPOSE	D FOUL DRAINAGE
	6.1	Propos	ed Foul Layout
	6.2	Design	Calculations
7	WA	TER SU	JPPLY AND DISTRIBUTION
	7.1	Propos	ed Watermain and Supply21
	7.2	Waterr	nain Standards and Details21
	7.3	Hydrar	nts
	7.4	Design	Calculations
8	Eng	gageme	nt with Cork City Council
A	ppend	dix A :	Irish Water RecordsA
A	ppend	dix B :	Attenuation CalculationsB
A	ppend	dix C :	Irish Water Confirmation of FeasibilityC
A	ppend	dix D :	SUDS Treatment and Interception Volume CalculationsD
A	ppend	dix E :	Uisce Éireann Statement of Design ComplianceF
A	ppend	dix F :	Response to 32B OpinionF

Figures

Figure 1-1: Site Location Plan (Source: JFA Architects)	. 4
Figure 4-1: Existing foul network records	10

Tables

Table 5-1: Summary of surface water runoff reduction factors	. 14
Table 6-1: Estimated Foul Loading for Development	. 20
Table 7-1: Estimated Water Demand for Development	. 22

1 INTRODUCTION

1.1 Background

DBFL have been instructed to prepare an Infrastructure Design Report (IDR) to accompany a planning application for the proposed residential development at Centre Park Road in the South Docklands of Cork City. This IDR was prepared to comply with current planning legislation and forms part of proposed planning application for a new large scale residential development (LRD) proposal for pre-planning application stage.

1.2 Location & Topography

The existing brownfield site is approximately 0.84 Ha in size and is located along South Docks area of Cork City, approx. 2km east of the City Centre. The site is bounded by Centre Park Road to the northwest and marsh land to the east. The lands to the southwest are to be developed with residential apartments as per planning reference: ABP-309059-20. The application site, known as the Former Ford Distribution Site, was used in more recent years for hosting music and cultural events, refer Figure 1-1 below for the site location.

Figure 1-1: Site Location Plan (Source: JFA Architects)

The site slopes from southwest to the northeast with levels ranging from 1.8m to the southwest rising to 3.9m at the northeast. The site boundaries are generally formed by fencing and scrub vegetation. The east of the site is formed by marshlands located south of the Lee Rowing Club. Structures on the site are limited to an entrance canopy and adjoining industrial shed. Centre Park Road is characterised by mature trees on both sides. There is an existing open drainage channel which runs along the northwestern and southeastern boundary of the subject site.

The site lies on the strategic transport corridor intended to facilitate a rapid transit system as identified in the Cork Metropolitan Area Transport Strategy.

1.3 Proposed Development

Permission for the construction of 176 no. 1 and 2 bed apartment units in 2 no. block, 1 no. creche, 1 no. gym, a retail/café space and all associated ancillary development works.

2 SITE ACCESS AND ROAD LAYOUT

2.1 Existing Access

The proposed development site has a single entry-point for vehicles and pedestrians at the northwest of the site in Centre Park Road.

2.2 Proposed Vehicular Access

The proposed development will be served via a shared vehicular, pedestrian and cyclist access off the Centre Park Road, located at the site's western boundary. In response to concerns raised in the Section 32b meeting with Cork City Council on the number of accesses off of Centre Park Road, the proposed access will be via the proposed 'Street C' of the adjacent development (planning reference: ABP-309059-20) to reduce the number of accesses onto Centre Park Road. This twoway access point will form a priority-controlled junction with the Centre Park Road and will serve as the sole vehicular entrance to the proposed residential development.

2.3 Proposed Pedestrian and Cyclist Access

Pedestrians and cyclists can access the subject site via the proposed footpath running along the northwestern boundary of the development, adjacent to Centre Park Road as well as the shared vehicular and pedestrian access via Street C of the adjacent development (planning reference: ABP-309059-20) to. The plan includes pedestrian and cyclist connections to the north and south of the site, which are designed to integrate with upcoming Marina Promenade and adjacent development, respectively. Pedestrian and cyclist permeability through the site is provided throughout.

The scheme proposals for the subject site will ensure pedestrians are given priority within the internal site layout to ensure desire lines within the site are accommodated, providing a good level of service, ensuring the risk of pedestrian conflict with vehicles is minimised and providing attractive convenient connections to external key walking desire lines.

2.4 Proposed Parking

The parking area within the development will consist of 56 no. car parking spaces which equates a ratio of 0.32 per residential unit. The total parking provision on site aligns with Cork City Development Plan (2022-2028) plans for the City Docklands area which aims to *"prioritise walking, cycling and public transport over other modes"*.

The Cork City Development Plan stipulates that an allocation of at least 1 bicycle parking space per residential unit (in City Centre /Inner Urban Areas locations) be provided. This equates to a minimum of 210 bicycle parking spaces for the proposed development.

A total of 427 bicycle parking spaces will be provided as part of the development. It is assumed that the cycle parking spaces will be sufficient to cater for the cycle parking demand associated with the residential elements of the scheme. All residential cycle parking spaces will be provided below street level.

3 FLOOD RISK

Refer to DBFL Site Specific Flood Risk Assessment report 240002-X-X-X-XXX-RP-DBFL-CE-0002.

4 EXISTING SERVICES AND UTILITIES

4.1 General

A comprehensive topographical survey was carried out for the subject site, existing drainage, and utility records in the vicinity of the site were obtained from Cork City Council and Irish Water and all utilities within the site were surveyed in detail. A summary of the existing services is provided below, and the Irish Water records can be found in Appendix A.

4.2 Surface Water Drainage

Within the site, there is currently no surface water network. Externally, Centre Park Road is drained via road gulleys into the existing open channel network which drains the South Docklands area, ultimately discharging to the Atlantic Pond and then into the River Lee.

4.3 Foul Sewer Drainage

A review of the Uisce Eireann records show that there is no existing foul network adjacent to the site boundary. The nearest connection point would be a foul sewer running along Marquee Road to the southwest as per Figure 4-1.

4.4 Water Supply

The site is well served by the adjacent watermain network. Uisce Eireann records show the presence of both a 400mm and a 100mm ductile iron watermain located along Centre Park Road and the Marina. Additionally, two 200mm connections from the adjacent development are proposed to serve the site. It is proposed to serve the site via a connection to the 200mm watermain connection from the adjacent development.

Figure 4-1: Existing foul network records

5 PROPOSED SURFACE WATER DRAINAGE

5.1 Surface Water Policy

The management of surface water for the proposed development has been designed to comply with the policies and guidelines outlined in the Cork City Development Plan Objectives 2022-2028. The guidelines require the following 4 main criteria to be provided by the design:

- Criterion 1: Sustainable Urban Drainage Systems (SUDS) for any new residential development it is required to incorporate SUDS by providing interception storage and treatment within the green roof, bio-retention/filter drains and green courtyard and garden.
- Criterion 2: Discharging to require that onsite petrol/interceptors and silt traps shall be installed to all significant road projects where surface water otherwise discharges to watercourse, to prevent hydrocarbon pollution of the water.
- Criterion 3: Storm Water- satisfied by the development's surface water drainage design, planned flood routing, run-off contained within site and that flood management ensures that measures are implemented to protect property and infrastructure.
- Criterion 4: Water quality– to support Irish water in its implementation of water quality for ground, surface, coastal and estuarine. To support mitigation and protection measures for all protected areas and associated source protection plan in line with the Water framework Directives.

5.2 Surface Water Strategy

To meet the requirements of the surface water policy above, the surface water strategy has been described in this section to give a clearer indication of how the design of the development has progressed to the submitted design. The surface water strategy for the proposed development area will incorporate SuDS features to reduce run-off and provide biodiversity benefits. Storm water from the contributing catchment will be attenuated and discharged into the adjacent development (planning reference: ABP-309059-20) which has accounted for the inclusion of runoff from the subject site. Discharge rates from the adjacent development accounting for the overall surface water strategy are in accordance with the South Docklands Drainage Strategy with stormwater storage facilities and SuDS elements incorporated to reduce run-off volumes and rates where possible.

The surface water network will be attenuated at one attenuation location using 'Stormtech' type systems to provide the attenuation storage volume required for a 100-year plus 20% climate change storm event. All surface water discharges will be controlled using a vortex flow control (Hydrobrake or equivalent).

The surface water strategy is aligned to the requirements of the Cork City Council South Docklands Levels Strategy. As there are no open channels to discharge to within the vicinity of the site boundary, it is proposed that the surface water generated on site will be discharged to the proposed surface water network within the adjacent development site (Ref. ABP-309059).

The adjacent scheme (Ref. ABP-309059) is under the same land owner/developer as the subject site and that this planning application is part of the wider site in regard to infrastructure. Therefore, design and coordinate between the two proposed surface water networks is possible. The SHD surface water drainage strategy has been designed to accommodate the surface water discharge generated by the proposed development. Discharge from the subject site into the adjacent SHD drainage network will be restricted to 5l/s via a flow control (see section 5.4 for details).

5.3 Sustainable Urban Drainage Systems (SUDS)

In accordance with the Cork City Development Plan 2022-2028 it is proposed to provide SUDS for managing surface water from the facility. The aim of the SUDS strategy for the site will be to:

- Attenuate surface water runoff;
- Reduce surface runoff;
- Reduce pollution impact; and
- Replicate the natural characteristics of rainfall runoff for the site.

An assessment of the potential SUDS that could be incorporated within the site was conducted using the SUDS Manual, CIRIA 753. The SUDS elements which were found applicable to the proposed scheme design and layout include the following:

1. Extensive green roofs, rain gardens, green podiums and permeable podium paving have been included in the scheme to provide interception, treatment and where possible, evapotranspiration. The interception and treatment benefits of rain garden systems are a major benefit within the treatment train and a vital part of the surface water management of the site. The location of rain gardens have been selected in more level areas of the site to ensure these are as effective as possible. S

D

- 2. Attenuation storage will be an online filtration type (Stormtech or similar approved) system with an isolator row to encourage infiltration and treatment of run-off.
- 3. A planted roof area with low growing, low maintenance plants consisting of self-sustaining mosses, sedums, succulents, herbs or grasses over a drainage layer and waterproofing membrane will be provided. Extensive green roofs provide ecological, aesthetic and amenity benefits and intercept, treat and retain rainfall, reducing the volume of runoff and attenuation of peak flows. The extensive roof will only be accessed for maintenance.

Although the buildup within the SuDS elements will provide a level of storage there is no flow control provided on the SuDS elements and as such the storage volumes cannot be accurately determined especially in larger rainfall events. The SuDS elements are designed to temporarily store the everyday rainfall event but in larger rainfall events the runoff will overflow back into the main drainage network and be stored in proposed attenuation tank which has been designed for the 100 year storm event plus climate change as well as the tidal locked event. Therefore, the incorporation of the above SUDS elements will provide a sustainable way to slow down and disperse surface water from the site and provide treatment of run-off and subsequent improvement of discharge quality.

5.4 Attenuation

Attenuation volumes have been calculated based on a discharge rate of 5l/s which has been aligned with the adjacent development's surface water network (Ref. ABP-309059), where it is proposed to discharge the development runoff. During discussions with CCC at preplanning stage, concern was raised about the rate of discharge into the adjacent development's drainage network and whether tidal locking had been considered during the design of the site wide drainage network. The drainage design of the adjacent development (Ref. ABP-309059) has accounted for the area of the subject site when sizing their attenuation tanks. Consequently the drainage network and attenuation tanks of the adjacent development can cater for uncontrolled runoff from the subject site. However, to ensure the site has enough storage to be self-sufficient in an extreme rainfall event, it is proposed to store runoff on site and release it into the adjacent development at a rate of 5l/s, thus providing a betterment from what has been designed for. Further, the design of the adjacent developments surface water network (Ref. ABP-309059) accounts for a tidal locked event and adequate storage is provided within the SHD for a tidal lock scenario.

The impermeable areas contributing to the attenuation volume have had the following reduction factors applied:

- Impermeable roofs, roads, foot paths and shared surfaces; a 5% reduction of the surface area is applied to take account of run-off not collected and stored within the micro and macro texture of the surfacing. (Various sources recommend different reduction coefficients e.g. IS EN752 recommends Runoff Coefficient (C for the Rational Method) of 0.9 to 1.0 for impermeable areas and steeply sloping roofs. For flat roofs it recommends 0.5 to 1.0 depending on area.
- <u>Roads and footpath areas draining to Bio-Swales, Filter Drains, Tree pits and Bio-Retention</u> <u>Areas</u>; a reduction factor of 30% has been used for these areas. Firstly, rainfall will 'wet' the initial surface of the paving, allowing water to be stored in the micro and macrotexture of the surfacing and will be lost to evapotranspiration, giving a reduction in volume. As runoff drains to these SUDS elements and through the build-up, the aggregate/soil surface area will also 'wet' giving another reduction of volume due to evapotranspiration and natural storage within the SUDS feature. There will also be a reduction of velocity as the aggregate/filter material used in the SUDS feature slows the run-off at source, changing the input hydrograph which will ultimately reduce the peak inflow for attenuation calculations.
- <u>Green areas</u>; a conservative reduction factor of 70% has been applied. The deep soil buildup will primarily absorb a substantial amount of the initial run-off and once saturated will reduce the flow of run-off through the green medium.

Description	Area (m²)	Reduction Factor
Green roof	1527	25%
Hardstand Roof	655	5%
Roads and paths draining to suds	2245	30%
Soft landscaping	996	70%
Green/Permeable podium	1308	25%

Table 5-1: Summary of surface water runoff reduction factors

The Stormtech systems were selected and designed to provide the required attenuation volume for the 100-year storm event using Microdrainage software (refer to Appendix B for summary of results). Calculations indicate that approximately 206m³ of storage volume for the 100-year event +20% climate change is needed. Due to the high water table present on the subject site, the proposed stormtech system will be lined to ensure no ground water can enter the proposed attenuation storage thus ensuring no reduction in storage volume.

5.5 Design Standards

The following design parameters are applicable to the design:

•	Time of entry:	8 minutes
•	Pipe Friction (Ks):	0.6 mm
•	Minimum Velocity:	1.0 m/s
•	Standard Average Annual Rainfall:	1045mm
•	M5-60:	18.8mm
•	Ratio r (M5-60/M5-2D):	0.26

• Attenuation Tank Storm Return Event:

30 year no flooding on site.100 year check no internal property flooding. Flood routing plan. FFL freeboard above 100-year flood level. No flooding to adjacent areas.

• Climate Change

20% for rainfall intensities.

Surface water sewers have been designed in accordance with IS EN 752 and the recommendations of the Cork City Development Plan.

The minimum pipe diameter for public surface water sewers is 225mm. Private drains comprise of diameters from 100mm.

5.6 Climate Change

Surface water calculations for the development made use of rainfall values for the South Docklands area as provided by Met Eireann. Rainfall intensities were increased by a factor of 20% to take account of climate change, in accordance with the Cork City Council Development Plan 2022-2028.

5.7 Flooding Provision

During an exceedance storm event, i.e. in excess of the 1% AEP event, remaining additional storage volume within the surface water network will fill within the freeboard flood levels before wider flooding of the development. After the remaining freeboard storage is exceeded, overland flow paths are designed to direct runoff either to landscape features and onto the public Centre Park Road. No flow paths direct runoff to third party lands.

5.8 Surface Water Quality Impact

The majority of the proposed development does not present a high risk of run-off contamination as most of the site coverage will be green roof area, green area (podiums, open spaces and gardens) and pedestrian walkways.

The development will drain into a subsurface stormwater network and into the online Stormtech Attenuation System which will provide removal of pollutants due to the geotextiles and filter stone.

5.9 Interception

The GDSDS requires that no run-off should directly pass to the receiving watercourse for rainfall depths of 5mm up to 10mm, therefore interception should be provided at source where practicable. The volume of interception required is based on 5mm of rainfall depth from 80% of the runoff from impermeable areas as defined in the GDSDS (Appendix Section E2.1.1).

Each of the SuDS features provided will allow a volume of infiltration/evapotranspiration to cater for interception storage. This storage will be additional to the attenuation storage required and will allow long-term interception of run-off corresponding to the 5mm rainfall depth mentioned above.

The development's drainage design allows for collection of most of the site's run-off via SUDS features e.g. green roofs, green/permeable podium and bioretention providing interception at source.

A total of **26.9m³** interception volume is required for the proposed development. The proposed SUDS features provide a total of **547.28m³** interception volume with all hardstanding area being intercepted by at least one SUDS feature, thus providing adequate interception for the proposed development. All SUDS interception calculations are provided in Appendix D.

5.10 Treatment Volume

The GDSDS requires that a "treatment volume" (Vt) be provided in order to prevent any pollutants or sediments discharging into river systems, additionally a 'treatment train' surface water runoff management system is required. According to CIRIA document C753 the following treatment train approach is necessary:

- Roofs 1 Treatment Stage
- Road Areas 2 Treatment Stages
- Paved Areas excluding Roads 1 Treatment Stage

Treatment is being provided by the various SuDS features included in the site, specifically the green roof, green/permeable podiums and rain garden. Finally all discharge will pass through a bypass separator before being discharged into the surface water network. All run-off areas will pass through the required number of treatment stages prior to discharging to the downstream outfall.

A total of **80.8m³** treatment volume is required for the proposed development. The proposed SUDS features provide a total of **213.51m³** treatment volume with all hardstanding area being intercepted by at least one SUDS feature, thus providing adequate treatment for the proposed development. All SUDS treatment calculations are provided in Appendix D.

5.11 SuDS and Drainage Network Maintenance

The SuDS features proposed above for the site will require the following maintenance:

<u>Permeable Paving</u>: Regular brushing and removal of leaves, removal of weeds as necessary. Stabilise and mow contributing and adjacent landscaped areas regularly. Repair any depressions, rutting, cracked or broken blocks considered detrimental to the structural performance or a hazard to users.

<u>Bypass Separator</u>: Systems should be inspected every 6 months (or in line with the manufacturer's instructions) to verify the appropriate level of maintenance. Floating debris and solids should be removed and the sump cleaned with a conventional sump vacuum cleaner. Filter media should be replaced and sediments, oils and grease should be removed where required.

<u>Green Roofs</u>: Green roofs should be maintained as per the details of the proprietary product brochure or manual. This varies from product to product but generally involves the application of fertilisers in the spring months, removal of flowers at the end of summer and the application of slow-release fertilisers in autumn.

<u>Catchpit Manhole</u>: Catchpit manholes collect silt and debris from upstream SuDS features and gullies in the surface water system. Due to large volumes of silt and debris building up in catchpit manhole sumps, it is essential for them to be cleaned regularly. Inadequate maintenance of the catchpit manholes can lead to reduced performance of storage and treatment systems and can cause blockages leading to flooding of the surface water system. It is recommended that suction equipment is used by skilled personnel when cleaning to ensure effective and safe removal of silt and debris from catchpit manholes.

<u>Bioretention Areas</u>: Bioretention areas should be regularly maintained to ensure optimum operation. Planting should be trimmed as necessary, and the surface regularly cleared of organic matter. Underdrains should be inspected regularly and cleared if necessary.

<u>'Stormtech' attenuation</u>: The Stormtech attenuation system should be maintained as per the details of the proprietary product brochure or manual. This generally involves clearing with jet vac equipment to remove sediment build-up within the system.

6 PROPOSED FOUL DRAINAGE

6.1 Proposed Foul Layout

The proposed developments wastewater will be discharged to the Uisce Eireann 225 mm diameter foul sewer on Marquee Road via the proposed foul water network within the adjacent Fords SHD development.

All matters relating to wastewater will be agreed with Uisce Eireann. A confirmation of feasibility was received from Irish Water confirming feasibility without need for any upgrade works.

6.2 Design Calculations

All new main foul sewers are designed to discharge by gravity. Minimum gradients and pipe diameters for gravity collector and main sewers are designed in accordance with the Building Regulations and Irish Water's Code of Practice for wastewater infrastructure and Standard Details for wastewater infrastructure.

The sewer network is designed in accordance with the principles and methods set out in Irish Water's Code of Practice for Wastewater Infrastructure, IS EN 752 (2008), IS EN12056: Part 2 and Building Regulations Part H.

Foul sewer design criteria are as follows:

Pipe Roughness Coefficient	1.5 mm
Minimum Velocity	0.75 m/s (self-cleansing)
Maximum Velocity	3.0 m/s

Estimated peak foul loading generated by the proposed development is provided in Table 6-1.

RESIDENTIAL - PREDICTED DEVELOPMENT FOUL FLOWS						
Use Type	No.	Loading (G) (l/p/day)	Occupancy Rate (p/unit)	Occupancy (p/unit)	Daily Loading (l/day)	Daily Loading (l/s)
Residential	176	150	2.7	489	71280	0.83
	NON	RESIDENTIAL -	PREDICTED DE	VELOPMENT FO	OUL FLOWS	
Use Type	Area (m²)	Loading (G) (l/p/day)	Occupancy Rate (m²/p)	Occupancy (p/m²)	Daily Loading (l/day)	Daily Loading (l/s)
Retail/Café/ Amenity	531	90	20	27	2390	0.03
Creche	181	50	10	18	905	0.03
Daily Loading						0.86
					Growth factor	1.00
			Infiltration @ 2	20% (as CoP App	endix B - 2.2.4)	0.10
Dry Weather Flow (l/s)					0.96	
Residential Peak Factor (as CoP App B 2.2.5)				6.0		
Design Foul Flow (l/s)				5.78		
*Flow rates extracted from IW CoP for Wastewater Infrastructure - Appendix B & C					B & C	

Overall design flows from the development are calculated using IW CoP for Wastewater Infrastructure Appendix C, as outlined below.

Dry Weather Flow = PG + I + EDesign Foul Flow = [$Pf_{Dom} \times PG$] + [$Pf_{Dom, Ind} \times P_EG_E$] + I + [$Pf_{Trade} \times E$] (Eqn1) Design Flow = Eqn 1 + [SW + SW_E]

The type of proposed use is mixed-use comprising residential and commercial; therefore, no industrial flow has been assumed.

For commercial premises a working day is assumed to be over 12 hours when flows will be contributing to the public sewer network.

Growth rates are not assumed as the proposed application is for a fixed quantum of development (G = 1).

Total Dry Weather Flow = 0.96 l/s

Total Foul Flow = 5.78l/s

7 WATER SUPPLY AND DISTRIBUTION

7.1 Proposed Watermain and Supply

It is proposed to supply the site via a 150mm connection to a spur provided as part of the adjacent development ABP-309059-20. Irish Water have previously confirmed the feasibility of a connection to the 400mm diameter ductile iron watermain along Centre Park to the south-east of the site, however upgrade works will be required to make the connection. Although the proposed connection is no longer proposed to be directly to the existing 400mm watermain and to the watermain from the adjacent development, the feed to the new watermain in the adjacent development will still be to the 400mm watermain. An amendment to the pre-connection enquiry will be submitted to Uisce Eireann.

7.2 Watermain Standards and Details

The water main layout and details including valves, hydrants, metering etc. will be in accordance with Irish Water's Code of Practice and Standard Details for water infrastructure.

7.3 Hydrants

Hydrants shall comply with the requirements of BS 750:2012 and shall be installed in accordance with Irish Water's Code of Practice and Standard Details.

7.4 Design Calculations

The water demand is designed in accordance with the principles and methods set out in Irish Water's Code of Practice for Water Infrastructure Connections and Developer Services Design & Construction Requirements for Self-Lay Developments December 2017:

Overall water demand is calculated using IW CoP for Water Infrastructure section 3.7.2, as outlined below:

Per-capita consumption	150l/person/day
Average day/week demand factor	1.25
Peak demand factor	5

Average daily domestic demand = Total occupancy * Per-capita consumption

Average day/peak week demand = Average daily domestic demand * Average day/week demand factor

Peak hour water demand = Average day/peak week demand * Peak demand factor

Estimated water demand for the proposed development is provided in Table 7-1.

	PREDICTED DEVELOPMENT WATER DEMAND						
	RESIDENTIAL - WATER DEMAND						
		Occupancy		Per Capita	Average daily	Average daily	
Unit Type	No.	Rate	Occupancy	Consumption	domestic	domestic	
		(person/unit)		(l/person/day)	demand (l/day)	demand (l/s)	
Residential	176	150	2.7	489	71280	0.83	
NON-RESIDENTIAL - WATER DEMAND							
Unit Type	Area (m²)	Occupancy Rate (m²/p)	Occupancy	Per Capita Consumption (l/person/day)	Average daily domestic demand (l/day)	Average daily domestic demand (l/s)	
Retail/Café/Amenity	531	90	20	27	2390	0.03	
Creche	181	50	10	18	905	0.03	
				Total Average	Daily Demand l/s	0.86	
Average Day/Week Domestic Demand					Domestic Demand	1.25	
Average Day/Peak Week Demand I/s					1.08		
Peak Demand Factor					5.0		
Peak Hour Water Demand I/s					5.39		
	*Flow rates calculated using IW CoP for Water Infrastructure						

Table 7-1: Estimated Water Demand for Development

8 Engagement with Cork City Council

As part of the preplanning requirements a Section 32B preplanning submission was presented to Cork City Council to address any major concerns and/or requirements prior to the submission of the final LRD planning application. Cork City Council provided an opinion on the civil engineering items presented to them at the Section 32B stage. The CCC opinions have been incorporated into the design changes and the report information presented with this planning application. Further, a response to each relevant civil engineering opinion item has been provided and summarised in Appendix E.

Appendix A : Irish Water Records

Centre Park Rd Water Network

Print Date: 14/09/2023

Printed by:CCC

I. No part of this drawing may be reproduced or transmitted in any form or stored in any retrieval system of any nature without the written permission of Irish Wateras copyrightholder except as agreed for use on the project for which the document was originally issued.

2. Whilst every care has been taken in its compilation, Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available information provided by each Local Authority in Ireland to Irish Water. Irish Water can assume no responsibility for and give no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided and does not accept any liability whatsoever arising from any errors or omissions. This information should not be relied upon in the event of excavations or any other works being carried out in the vicinity of the Irish Water underground network. The onu is on the parties carrying out excavations or any other works to ensure the exact location of the Irish Water underground network is identified prior becavations or any other works being carried out.

Copyright Irish Water

Reproduced from the Ordnance Survey Of Ireland by Permission of the Government. License No. 3-3-34

"Gas Networks Ireland (GNI), their affiliates and assigns, accept no responsibility for any information contained in this document concerning location and technical designation of the gas distribution and transmission network ("the Information"). Any representations and warranties express or implied, are excluded to the fullest extent permitted by law. No fability shall be accepted for any bos or damage including, without limitation, direct, indirect, special, incidental, punitive or consequential loss including loss of profits, arising out of or in connection with the use of the information forcluding maps or mapping data).

(including maps or mapping data). NOTE: DIAL BEFORE YOU DIG Phone: 1850 427 747 or e-mail dig@gasnetworks.ie - The actual position of the gas/electricity distribution and transmission network must be verified on site before any mechanical excavating takes place. If any mechanical excavation is proposed, hard copy maps must be requested from GNI re gas. All work in the vicinity of gas distribution and transmission network must be completed in accordance with the current edition of the Health & Safety Authority publication, "Code of Practice For Avoiding Danger From Underground Services" which is available from the Health and Safety Authority (1890 28 93 89) or can be downloaded free of charge at www.hsa.ie."

Water Distribution Network Sewer Foul Combined Network Storm Water Network Waste Water Treatment Plant Surface Water Mains - Surface Gravity Mains Water Pump Station ▲ Waste Water Pump station - Surface Gravity Mains Private ☐/▼ Storage Cell/Tower Sewer Mains Irish Wate Surface Water Pressurised Mains Dosing Point - Gravity - Combined Surface Water Pressurised Mains Pr Gravity - Foul Gravity - Unknow Meter Station Inlet Type Abstraction Poin Gully = Pumping - Combined Pumping - Foul Standard Telemetry Kios Other: Unknown Pumping - Unknowi Syphon - Combined Syphon - Foul Storm Manholes Potable StandardBackdrop Raw Wate - Overflow Nater Distribution Sewer Mains Private Cascade Irish Water Catchpit - Gravity - Combined - Private Gravity - Combine Gravity - Foul Gravity - Unknowr O Bifurcation Trunk Water Main [보] Hatchbox Irish Wate Pumping - Combined Lamphole Private Hydrobrake Vater Lateral Lines = Pumping - Unknown Other; Unknown Syphon - Combine Syphon - Foul Irish Water --- Storm Culverts – Non IW Storm Clean Outs Water Casinos Overflow Stormwater Chambers ----- Sewer Lateral Lines --- Water Abandoned Line Discharge Type Boundary Meter -) Outfall Bulk/Check Mete Sewer Manholes Overflow Group Scheme Standard Soakaway Source Meter O Backdrop Waste Mete OTHER Other: Unknown Cascade Catchpit Gas Networks Ireland Unknown Meter ; Other I Mon-Return Transmission High Pressure Gasline Bifurcation --- Distribution Medium Pressure Gasline PRV Hatchbox ----- Distribution Low Pressure Gasline PSV PSV ど Lamphole ESB Networks Sluice Line Valve Open/Closed Hydrobrake ESB HV Lines Other; Unknow Butterfly Line Valve Open/Closed HV Underground Sluice Boundary Valve Open/Closed Discharge Type HV Overhead HV Abandoned Butterfly Boundary Valve Open/Closed Outfall Scour Valves Overflow ESB MVLV Lines Single Air Control Valve MV Overhead Three Phase 💕 Soakaway Double Air Control Valve MV Overhead Single Phase
 LV Overhead Three Phase Standard Outle 8 Water Stop Valves "ë[∎] Other; Unknow --- LV Overhead Single Phase Water Service Connection Cleanout Type ----- MVLV Underground Water Distribution Chamber Rodding Eye - Abandoned Water Network Junctions O Flushing Structure Non Service Categories Pressure Monitoring Poi * Other; Unknow Proposed 🕂 Fire Hydrant Sewer Inlets Under Construction Fire Hydrant/Washou Out of Service Catchpit Gully
 Standard Nater Fittings Decommissioned Water Non Service Assets L Cap ^o[™][≝]^{E R} Other: Unknov Water Point Feature - Water Pipe 🛎 Тар Sewer Fittings Water Structure Other Fittings Vent/Col Waste Non Service Asset o Ties R Other; Unkr X Waste Point Feature Sewer
 Waste Structure

Appendix B : Attenuation Calculations

DBFL Consul	ting Engir	neers							Page	1
Ormond Hous	e			2400	02					
Upper Ormon	d Quay			Ford	s LRD					
Dublin 7	~ 1									<u> </u>
Dabin /	2024			Deed		MT C			- MICI	0
Date 12/11/	2024			Desi	gnea b	у мьс			Drair	าลตค
File Attenu	ation Tank	c.SRCX		Chec	ked by	NJF			Bran	
Innovyze				Sour	ce Con	trol 202	0.1			
	Summary c	of Res	ults :	for 10	0 year	Return	Period	(+20%)	
					_				-	
		Н	alf Dr	ain Tir	ne : 368	3 minutes.				
	Storm	Max	Max	Ma	ax	Max	Max	Max	Status	
	Event	Level	Depth	Infilt	ration	Control E	Outflow	Volume		
		(m)	(m)	(1/	′s)	(l/s)	(l/s)	(m³)		
15	min Summer	0.907	0.507		0.0	5.0	5.0	105 1	OK	
30	min Summer	1 100	0.052		0.0	5.0	5.0	122 5	O K	
60	min Summer	1 210	0./89		0.0	5.0	5.0	152.5	O K	
120	min Summer	1.31U	0.910		0.0	5.0	5.0	160 0	O K	
180	min Summer	1.362	0.962		0.0	5.0	5.0	108.2	OK	
240	min Summer	1.38/	0.987		0.0	5.0	5.0	1/3.4	OK	
360	min Summer	1.398	0.998		0.0	5.0	5.0	175.7	ОК	
480	min Summer	1.396	0.996		0.0	5.0	5.0	175.3	ОК	
600	min Summer	1.390	0.990		0.0	5.0	5.0	174.1	ОК	
720	min Summer	1.383	0.983		0.0	5.0	5.0	172.5	ОК	
960	min Summer	1.364	0.964		0.0	5.0	5.0	168.6	ΟK	
1440	min Summer	1.315	0.915		0.0	5.0	5.0	158.3	ΟK	
2160	min Summer	1.221	0.821		0.0	5.0	5.0	139.0	ΟK	
2880	min Summer	1.099	0.699		0.0	5.0	5.0	114.4	ОК	
4320	min Summer	0.876	0.476		0.0	5.0	5.0	71.3	ΟK	
5760	min Summer	0.723	0.323		0.0	5.0	5.0	42.9	ОК	
7200	min Summer	0.624	0.224		0.0	4.9	4.9	25.2	O K	
8640	min Summer	0.551	0.151		0.0	4.7	4.7	15.2	O K	
10080	min Summer	0.497	0.097		0.0	4.5	4.5	9.8	ΟK	
15	min Winter	0.959	0.559		0.0	5.0	5.0	87.1	ΟK	
		Storm		Rain	Flooded	l Discharge	e Time-P	eak		
		Event	(:	mm/hr)	Volume	Volume	(mins	5)		
					(m³)	(m³)				
	1 -	min a	~~~~~		0.0		7	22		
	15	min Su	uner	20.59/	0.0	J 82.	-	22		
	30	min Su	nmer	00.116	0.0		D 1	30		
	60	min Su	nmer	43.030	0.0	149.1	1	66 104		
	120	min Su	umer	21.287	0.0	J 189.	L F	⊥∠4 100		
	180	min Su	nmer	∠0./53	0.0	J 215.	2	T85		
	240	min Su	nmer	10 000	0.0	236.	5	242		
	360	min Su	mmer	12.893	0.0	268.2	L	332		
	480	min Su	mmer	10.563	0.0	292.0	0 -	392		
	600	min Su	mmer	9.045	0.0	J 313.	2	458		
	720	min Su	mmer	7.967	0.0	331.3	2	524		
	960	min Su	mmer	6.521	0.0	J 361.	3	664		
	1440	min Su	mmer	4.913	0.0	408.4	4	942		
	2160	min Sun	mmer	3.694	0.0	460.8	в 1 С	364		
	2880	min Sun	mmer	3.015	0.0	501.	31	760		
	4320	min Su	mmer	2.261	0.0	564.2	⊥ 2	464		
	5760	min Su	mmer	1.843	0.0	613.0	ບ 3	120		
	7200	min Su	mmer	1.573	0.0	654.0	ມ 3 -	816		
	8640	min Su	mmer	1.382	0.0	689.	5 4	488		
	T0080	min Su	nmer	1.239	0.0	/21.2	1 5	⊥44		
	15	min Wi	uter	95.597	0.0	92.0	o	22		

©1982-2020 Innovyze

Ormon House 24002 Dublin 7 Designed by ML2 District 12/11/2024 Designed by ML2 File Attenuation Tank.SRC4 Checked by NJ7 Tonoyze Source Control 2020.1 Source Control 500.5.0 Source Control 500.5.0 Colspan="2">Source Control 500.5.0 Source Control 500.5.0	DBFL Consulting Engineers				Page 2	
Upper Ormond Quay Date 12/11/2024 Fords LED Import Checked by NLC Checked by NLF File Attenuation Tank.SRCX Source Control 2020.1 Summary of Results for 100 year Return Period (+20%) Storm News Max Max File Attenuation Tank.SRCX Max Source Control 2020.1 Summary of Results for 100 year Return Period (+20%) Storm News Max Storm News Max Storm News News Storm News Source Control 2020.1 Storm News Max Storm News Max Storm News Source Control 2020.7 Store	Ormond House	240002	240002			
Data 17 Data 12/11/2024 F18 Attenuation Tank.SRX Designed by MLC Checked by NJT Designed by MLC Checked by NJT Tunoyza Source Control 2020.1 Source Control 2020.0 Source Control 2020.1 Source Control 2020.0 <th colspan="</td> <td>Upper Ormond Quay</td> <td>Fords LRD</td> <td colspan="4">Fords LRD</td>	Upper Ormond Quay	Fords LRD	Fords LRD			
Date 12/11/2024 Designed by MLC Checked by NJF Designed by MLC Innovyze Source Control 2020.1 Source Control 2020.0 Source Control 2020.0 Source Control 2020.1 Source Control 2020.0 Source Control 2020.0 Source Control 2020.0 Source Control 2020.0 Source Control 2020.0 <tr< td=""><td>Dublin 7</td><td></td><td colspan="4"></td></tr<>	Dublin 7					
P18 Attenuation Tank. SRCX Checked by NJF Innovyza Source Control 2020.1 Source Control 2020.1 Source Control 2 Outflow Yolume Control 2 Outflow Yolume Source Control 2 Outflow Yolume Outflow Yolume <td>Date 12/11/2024</td> <td>Designed b</td> <td>V MLC</td> <td></td> <td></td>	Date 12/11/2024	Designed b	V MLC			
The relation rule rule rule rule rule rule rule rule	File Attenuation Tank SPCY	Checked by	N.TE		Drainage	
Through the second sec		Checked by	taral 2020	1	_	
<section-header></section-header>	Innovyze	Source Con	itrol 2020	• 1		
		5 1 0 0				
Storn Nax Parth Parth Nax Na	Summary of Results	for 100 year	r Return P	eriod (+20%)	-	
Brent Hax Hax </td <td></td> <td></td> <td></td> <td></td> <td></td>						
Yean Devent Jerker helpfelt Juniteriation Juniteriation Juniteriation 30 min Winter 1.123 0.723 0.0 5.0 5.0 19.1 0.6 60 min Winter 1.218 0.01 5.0 5.0 19.1 0.6 100 min Winter 1.154 1.116 0.0 5.0 5.0 201.6 0.6 30 min Winter 1.516 1.114 0.0 5.0 5.0 205.0 0.6 30 min Winter 1.611 1.211 0.0 5.0 5.0 206.3 0.6 20 min Winter 1.624 1.144 0.0 5.0 5.0 176.3 0.6 30 min Winter 1.624 0.14 0.0 5.0 5.0 101.3 0.6 310 min Winter 1.624 0.32 0.0 5.0 5.0 101.3 0.6 320 min Winter 0.719 0.319 0.0 3.4 3.4 2.7 0.6 300 min Winter <t< td=""><td>Storm Max Max</td><td>Max</td><td>Max Gentrel 7 0</td><td>Max Max</td><td>Status</td></t<>	Storm Max Max	Max	Max Gentrel 7 0	Max Max	Status	
30 min Winter 1.213 0.723 0.0 5.0 5.0 11.6 0 K 120 min Winter 1.217 0.678 0.0 5.0 5.0 15.0 6 K 120 min Winter 1.516 1.116 0.0 5.0 5.0 120 K 0 K 120 min Winter 1.516 1.116 0.0 5.0 5.0 120 K 0 K 130 min Winter 1.611 1.211 0.0 5.0 5.0 202.6 0 K 140 min Winter 1.611 1.211 0.0 5.0 5.0 202.0 0 K 140 min Winter 1.611 1.001 0.0 5.0 5.0 124.1 0 K 1440 min Winter 1.613 0.632 0.0 5.0 5.0 124.1 0 K 2160 min Winter 1.032 0.632 0.0 5.0 5.0 124.1 0 K 220 min Winter 1.032 0.632 0.0 5.0 5.0 124.1 0 K 220 min Winter 1.032 0.632 0.0 5.0 5.0 144.0 0 K 230 min Winter 0.439 0.0 3.4 3.4 2.7 0 K 230 min Winter 0.439 0.02 16.2	Event Level Depth	(1/g)	(1/g) (1/g) (m ³)		
30 min Winter 1.1270 0.723 0.0 5.0 5.0 150.6 0 K 60 min Winter 1.270 0.78 0.0 5.0 5.0 150.6 0 K 100 min Winter 1.591 1.116 0.0 5.0 5.0 194.3 0 K 200 min Winter 1.591 1.114 0.0 5.0 5.0 205.0 0 K 30 min Winter 1.630 1.230 0.0 5.0 5.0 205.0 0 K 720 min Winter 1.515 1.115 0.0 5.0 5.0 206.7 0 K 960 min Winter 1.551 1.114 0.0 5.0 5.0 176.3 0 K 210 min Winter 1.521 1.114 0.0 5.0 5.0 176.3 0 K 210 min Winter 1.021 0.632 0.632 0.0 5.0 5.0 176.3 0 K 210 min Winter 1.031 0.632 0.632 0.0 5.0 5.0 141.0 0 K 220 min Winter 1.021 0.632 0.666 0.0 4.2 4.2 6.7 0 K 210 min Winter 0.439 0.039 0.0 3.4 3.4 2.7 0 K 560 min Winter 0.427 0.027 0.0 3.	()	(1/8)	(1/5) (1/5) (111)		
60 min Winter 1.218 0.0878 0.0 5.0 5.0 150.6 0 K 180 min Winter 1.516 1.116 0.0 5.0 5.0 180.1 0 K 240 min Winter 1.594 1.124 0.0 5.0 5.0 206.3 0 K 360 min Winter 1.611 1.211 0.0 5.0 5.0 206.3 0 K 600 min Winter 1.513 1.121 0.0 5.0 5.0 200.7 0 K 720 min Winter 1.514 1.114 0.0 5.0 5.0 200.7 0 K 960 min Winter 1.514 1.114 0.0 5.0 5.0 194.1 0 K 1440 min Winter 1.514 0.101 0.0 5.0 5.0 194.1 0 K 2800 min Winter 1.246 0.346 0.0 5.0 5.0 144.0 0 K 2800 min Winter 0.719 0.319 0.0 5.0 5.0 144.0 0 K 7000 min Winter 0.439 0.039 0.0 3.8 3.8 4.0 0 K 10080 min Winter 0.437 0.027 0.0 3.4 3.4 2.7 0 K 30 min Winter 1.246 0.753 0.0 121.9 122 67 <td< td=""><td>30 min Winter 1.123 0.723</td><td>0.0</td><td>5.0</td><td>5.0 119.2</td><td>ОК</td></td<>	30 min Winter 1.123 0.723	0.0	5.0	5.0 119.2	ОК	
120 min Winter 1, 1418 1, 018 0.0 5.0 5.0 194.3 0.K 240 min Winter 1, 1594 1, 194 0.0 5.0 5.0 201.6 0.K 360 min Winter 1, 1641 1, 221 0.0 5.0 5.0 202.0 0.K 720 min Winter 1, 1511 1, 121 0.0 5.0 5.0 202.0 0.K 720 min Winter 1, 1511 1, 121 0.0 5.0 5.0 200.7 0.K 960 min Winter 1, 101 0.0 5.0 5.0 101.1 0.K 1410 min Winter 1, 1021 0.0 5.0 5.0 101.1 0.K 1410 min Winter 1, 1021 0.01 5.0 5.0 101.1 0.K 2160 min Winter 1, 1021 0.01 5.0 5.0 101.0 NK 2160 min Winter 0, 156 0.156 0.0 4.8 4.8 15.7 0.K 7200 min Winter 0, 459 0.156 0.0 4.2 4.7 0.K 7200 min Winter 0, 427 0.027 0.0 3.4 3.4 4.0 0.K 10080 min Winter 0, 427 0.0 126.5 120	60 min Winter 1.278 0.878	0.0	5.0	5.0 150.6	O K	
180 min Winter 1.516 1.116 0.0 5.0 5.0 5.0 201.6 0 K 360 min Winter 1.644 1.244 0.0 5.0 5.0 206.3 0 K 600 min Winter 1.611 1.211 0.0 5.0 5.0 203.2 0 K 720 min Winter 1.514 1.114 0.0 5.0 5.0 203.2 0 K 720 min Winter 1.101 0.0 5.0 5.0 194.1 0 K 1440 min Winter 1.1021 0.0 5.0 5.0 101.3 0 K 280 min Winter 1.032 0.632 0.0 5.0 5.0 101.3 0 K 280 min Winter 0.719 0.119 0.0 5.0 5.0 101.3 0 K 2700 min Winter 0.439 0.039 0.0 3.8 3.8 4.0 0 K 200 min Winter 0.427 0.027 0.0 3.4 3.4 2.7 0 K 10080 min Winter 1.466 0.166 0.0 128.2 36 36 36 0 K 10080 min Winter 0.439 0.39 0.0 3.4 3.4 2.7 0 K 200 mi	120 min Winter 1.418 1.018	0.0	5.0	5.0 180.1	ОК	
240 min Winter 1, 1594 1, 1294 0.0 5.0 5.0 206.3 0 K 480 min Winter 1, 630 1, 230 0.0 5.0 5.0 206.3 0 K 600 min Winter 1, 111, 1211 0.0 5.0 5.0 200.7 0 K 720 min Winter 1, 514 1, 114 0.0 5.0 5.0 101.3 0 K 1440 min Winter 1, 142 0.0 5.0 5.0 104.0 0 K 2160 min Winter 1, 132 0, 632 0.0 5.0 5.0 101.3 0 K 2420 min Winter 0, 129 0, 05156 0.0 4.8 4.8 15.7 0 K 700 min Winter 0, 456 0, 056 0.0 4.8 4.8 15.7 0 K 700 min Winter 0, 427 0, 027 0.0 3.4 3.4 2.7 0 K 10080 min Winter 1, 12, 12, 127 0.0 124.9 122 120 0 K 10080 min Winter 1, 12, 127 0.0 3.4 3.4 2.7 0 K 10080 min Winter 1, 12, 127 0.0 124.9 122 120 120 120 120 121 121 121 121 121 <td>180 min Winter 1.516 1.116</td> <td>0.0</td> <td>5.0</td> <td>5.0 194.3</td> <td>O K</td>	180 min Winter 1.516 1.116	0.0	5.0	5.0 194.3	O K	
360 min Winter 1.630 1.230 0.0 5.0 5.0 205.0 0 K 600 min Winter 1.611 1.211 0.0 5.0 5.0 200.7 0 K 720 min Winter 1.514 1.114 0.0 5.0 5.0 194.1 0 K 1440 min Winter 1.401 1.001 0.0 5.0 5.0 194.1 0 K 2160 min Winter 1.032 0.632 0.0 5.0 5.0 124.0 0 K 230 min Winter 0.719 0.319 0.0 5.0 5.0 124.0 0 K 230 min Winter 0.556 0.156 0.0 4.8 4.8 15.7 0 K 7200 min Winter 0.466 0.066 0.0 4.2 4.2 6.7 0 K 8640 min Winter 0.439 0.039 0.0 3.8 3.8 4.0 0 K 10080 min Winter 0.427 0.027 0.0 3.4 3.4 2.7 0 K 30 min Winter 1.297 0.027 0.0 128.2 36 6 10080 min Winter 1.297 0.027 0.0 128.2 36 6 10080 min Winter 1.297 0.027 0.0 128.2 36 6 10080 min Winter 1.300 <td>240 min Winter 1.594 1.194</td> <td>0.0</td> <td>5.0</td> <td>5.0 201.6</td> <td>O K</td>	240 min Winter 1.594 1.194	0.0	5.0	5.0 201.6	O K	
400 min Winter 1.611.211 0.0 5.0 5.0 205.0 0 K 720 min Winter 1.585 1.185 0.0 5.0 5.0 200.7 0 K 960 min Winter 1.514 1.114 0.0 5.0 5.0 194.1 0 K 1440 min Winter 1.3246 0.846 0.0 5.0 5.0 101.3 0 K 2160 min Winter 1.0210 0.462 0.0 5.0 5.0 101.3 0 K 2320 min Winter 1.0320 0.05 5.0 5.0 101.3 0 K 5760 min Winter 0.560 0.156 0.0 4.8 4.8 15.7 0 K 7200 min Winter 0.466 0.066 0.0 4.2 4.7 0 K 0 K 7000 min Winter 0.427 0.027 0.0 3.4 3.4 2.7 0 K 10080 min Winter 0.427 0.027 0.0 3.4 3.4 2.7 0 K 10080 min Winter 1.227 0.0 128.2 36 36 36 36 36 10080 min Winter 2.227 0.0 128.2 36 36 36 <td< td=""><td>360 min Winter 1.644 1.244</td><td>0.0</td><td>5.0</td><td>5.0 206.3</td><td>OK</td></td<>	360 min Winter 1.644 1.244	0.0	5.0	5.0 206.3	OK	
000 min winter 1.585 1.185 0.0 5.0 5.0 20.7 0 K 960 min Winter 1.514 1.114 0.0 5.0 5.0 194.1 0 K 1440 min Winter 1.040 1.001 0.0 5.0 5.0 194.1 0 K 2160 min Winter 1.246 0.846 0.0 5.0 5.0 114.0 0 K 280 min Winter 1.032 0.652 0.0 5.0 5.0 101.3 0 K 4320 min Winter 0.719 0.319 0.0 5.0 5.0 104.0 0 K 5760 min Winter 0.420 0.056 0.0 4.8 4.8 15.7 0 K 7000 min Winter 0.427 0.027 0.0 3.4 3.4 2.7 0 K 10080 min Winter 0.427 0.027 0.0 3.4 3.4 2.7 0 K 10080 min Winter 0.427 0.027 0.0 128.2 36 6 60 min Winter 43.030 0.0 128.2 36 10080 min Winter 1.2493 0.0 200.3 344 4.0 120 120 10080 min Winter 1.2493 0.0 300.3 344 480 100 120.5 121.9 122	480 min Winter 1.630 1.230	0.0	5.0	5.0 205.0	ОК	
120 min winter 1.514 1.114 0.0 5.0 5.0 194.1 0 K 1440 min Winter 1.401 1.001 0.0 5.0 5.0 194.1 0 K 2160 min Winter 1.236 0.632 0.0 5.0 5.0 101.3 0 K 2880 min Winter 1.032 0.632 0.0 5.0 5.0 101.3 0 K 230 min Winter 0.719 0.319 0.0 5.0 5.0 101.3 0 K 5760 min Winter 0.466 0.066 0.0 4.2 4.2 6.7 0 K 7200 min Winter 0.466 0.066 0.0 4.2 4.2 6.7 0 K 10080 min Winter 0.427 0.027 0.0 3.4 3.4 2.7 0 K 10080 min Winter 0.427 0.027 0.0 3.4 3.4 2.7 0 K 30 min Winter 4 50.16 0.0 128.2 36 60 min Winter 27.733 0.0 241.5 180 240 min Winter 10.490 0.0 300.3 344 480 min Winter 10.563 0.0 377.9 440 600 min Winter 3.045 0.0 300.3 344 480 m	600 min Winter 1.611 1.211	0.0	5.0	5.0 203.2	OK	
300 min Winter 1.514 1.114 0.0 5.0 5.0 176.1 0 K 2160 min Winter 1.246 0.846 0.0 5.0 5.0 144.0 0 K 2880 min Winter 1.032 0.632 0.0 5.0 5.0 101.3 0 K 4320 min Winter 0.719 0.319 0.0 5.0 5.0 42.2 0 K 7200 min Winter 0.466 0.066 0.0 4.8 4.8 15.7 0 K 7200 min Winter 0.439 0.029 0.0 3.8 3.8 4.0 0 K 10080 min Winter 0.427 0.027 0.0 3.4 3.4 2.7 0 K 10080 min Winter 0.427 0.027 0.0 3.4 3.4 2.7 0 K 30 min Winter 1.330 0.0 166.9 64 120 min Winter 17.049 0.0 261.6 236 360 min Winter 10.563 0.0 321.9 122 180 344 480 min Winter 1.563 0.0 327.9 440 600 min Winter 1.9653 0.0 320.9 476 720 106 314 342 120 min Winter 3.015 0.0 515.1 1026 2166 360 364	/20 min Winter 1.585 1.185	0.0	5.0	5.0 200.7	UK	
1100 min Winter 1.246 0.0 5.0 5.0 140.3 0 K 2880 min Winter 1.032 0.632 0.0 5.0 5.0 101.3 0 K 4320 min Winter 0.719 0.319 0.0 5.0 5.0 42.2 0 K 5760 min Winter 0.456 0.066 0.0 4.8 4.8 15.7 0 K 7200 min Winter 0.456 0.066 0.0 4.2 4.2 6.7 0 K 8640 min Winter 0.427 0.027 0.0 3.4 3.4 2.7 0 K 10080 min Winter 0.427 0.027 0.0 3.4 3.4 2.7 0 K 2100 min Winter 14.27 0.027 0.0 3.4 3.4 2.7 0 K 30 min Winter 10.427 0.027 0.0 128.2 36 36 60 min Winter 12.287 0.0 211.9 122 18 120 18 120 18 120 18 120 18 100 344 480 100 30.4 314 140 </td <td>960 min Winter 1.514 1.114</td> <td>0.0</td> <td>5.0</td> <td>5.0 194.1 5.0 176 2</td> <td>OK</td>	960 min Winter 1.514 1.114	0.0	5.0	5.0 194.1 5.0 176 2	OK	
2880 min Winter 1.030 0.632 0.0 5.0 5.0 101.3 0 K 4320 min Winter 0.719 0.319 0.0 5.0 5.0 4.2 0 K 5760 min Winter 0.565 0.156 0.0 4.8 4.8 15.7 0 K 7200 min Winter 0.439 0.039 0.0 3.8 4.8 15.7 0 K 8640 min Winter 0.437 0.027 0.0 3.4 3.4 2.7 0 K 10080 min Winter 0.427 0.027 0.0 3.4 3.4 2.7 0 K 10080 min Winter 0.427 0.027 0.0 166.9 64 120 min Winter 10.427 0.027 0.0 128.2 36 60 min Winter 27.287 0.0 211.9 122 180 min Winter 10.553 0.0 300.3 344 480 min Winter 10.563 0.0 327.9 440 600 min Winter 7.967 0.0 371.1 554 960 min Winter 3.015 0.0 350.9 476 702 min Winter 3.015 0.0 561.5 1825 126 min Winter 3.015 0.0 561.5 1825 120 min Winter 3.015	$2160 \text{ min Winter } 1.246 \ 0.846$	0.0	5.0	5.0 170.3	0 K	
4320 min Winter 0.719 0.319 0.0 5.0 5.0 42.2 0.K 5760 min Winter 0.466 0.066 0.0 4.8 4.8 15.7 0 K 8640 min Winter 0.439 0.039 0.0 3.8 3.8 4.0 0 K 10080 min Winter 0.427 0.027 0.0 3.4 3.4 2.7 0 K 10080 min Winter 0.427 0.027 0.0 3.4 3.4 2.7 0 K 30 min Winter 66.116 0.0 128.2 36 60 min Winter 7.287 0.0 21.9 122 100 min Winter 12.993 0.0 30.3 344 480 min Winter 10.553 0.0 221.9 122 180 min Winter 10.563 0.0 327.9 440 600 min Winter 10.563 0.0 327.9 440 600 min Winter 1.2993 0.0 301.3 344 4300 min Winter 3.654 0.0 516.2 1476 720 min Winter 3.05 0.0 327.9 440 600 min Winter 3.694 0.0 516.2 1476 720 min Winter 1.2261 0.0 631.8 2508 </td <td>2880 min Winter 1.032 0.632</td> <td>0.0</td> <td>5.0</td> <td>5.0 101.3</td> <td>0 K</td>	2880 min Winter 1.032 0.632	0.0	5.0	5.0 101.3	0 K	
5760 min Winter 0.556 0.156 0.0 4.8 4.8 15.7 0 K 7200 min Winter 0.439 0.039 0.0 3.8 3.8 4.0 0 K 10080 min Winter 0.427 0.027 0.0 3.4 3.4 2.7 0 K 10080 min Winter 0.427 0.027 0.0 3.4 3.4 2.7 0 K 30 min Winter 0.427 0.027 0.0 166.9 64 10000 min Winter 43.030 0.0 166.9 64 120 min Winter 20.753 0.0 241.5 180 240 min Winter 17.049 0.0 264.6 236 360 min Winter 10.563 0.0 300.3 344 480 min Winter 10.563 0.0 300.9 476 7200 min Winter 3.045 0.0 350.9 476 720 min Winter 4.913 0.0 451.5 1026 2160 min Winter 1.2893 0.0 371.1 554 960 min Winter 10.563 0.0 351.5 1026 2160 min Winter 1.2893 0.0 351.5 1026 2160 min Winter 1.3644 0.0 561.5 1852	4320 min Winter 0.719 0.319	0.0	5.0	5.0 42.2	0 K	
7200 min Winter 0.466 0.066 0.0 4.2 4.2 6.7 0 K 8640 min Winter 0.439 0.039 0.0 3.8 3.8 4.0 0 K 10080 min Winter 0.427 0.027 0.0 3.4 3.4 2.7 0 K Storm Rain Flooded Discharge Time-Peak Event Volume (mm/hr) Volume (mins) (mins) 30 min Winter 66.116 0.0 128.2 36 60 min Winter 27.287 0.0 211.9 122 180 min Winter 17.049 0.0 264.6 236 360 min Winter 10.563 0.0 370.9 440 600 min Winter 4.913 0.0 350.9 476 720 mi Winter 4.913 0.0 350.9 476 720 mi Winter 3.694 0.0 516.2 1476 280 min Winter 1.843 0.0 686.6 3064 7200 min Winter 1.843 0.0 686.6 3064 7200 min Winter 1.843 0.0 686.6 3064 720 min Winter 1.239	5760 min Winter 0.556 0.156	0.0	4.8	4.8 15.7	ОК	
8640 min Winter 0.439 0.039 0.0 3.8 3.8 4.0 0 K 10080 min Winter 0.427 0.027 0.0 3.4 3.4 2.7 0 K Storm (mm/hr) Volume Volume (mins) Volume Volume (mins) 30 min Winter 66.116 0.0 128.2 36 60 min Winter 43.030 0.0 166.9 64 120 min Winter 27.287 0.0 211.9 122 180 min Winter 10.563 0.0 300.3 344 480 min Winter 10.563 0.0 300.3 344 480 min Winter 10.563 0.0 300.3 344 480 min Winter 10.563 0.0 327.9 440 600 min Winter 6.521 0.0 350.9 476 720 min Winter 3.054 0.0 451.5 1026 960 min Winter 3.015 0.0 551.5 1652 4320 min Winter 1.843 0.0 686.6 3064 7200 min Winter 1.573 0.0 772.2 4400 10080 min Winter 1.239 0.0 807.7 5072 10080 min Winter 1.239	7200 min Winter 0.466 0.066	0.0	4.2	4.2 6.7	ОК	
10080 min Winter 0.427 0.027 0.0 3.4 3.4 2.7 0.8 Storm Rind (mm/kr) Yolum Volume (mins) (m³) (m³) 30 min Winter 66.116 0.0 128.2 36 60 min Winter 43.030 0.0 166.9 64 120 min Winter 27.287 0.0 211.9 122 180 min Winter 27.53 0.0 241.5 180 240 min Winter 12.893 0.0 300.3 344 480 min Winter 12.893 0.0 350.9 440 600 min Winter 1.9653 0.0 350.9 440 600 min Winter 6.521 0.0 404.9 714 1440 min Winter 3.694 0.0 551.5 1852 4320 min Winter 3.694 0.0 551.5 1852 4320 min Winter 1.573 0.0 732.4 3744 8640 min Winter 1.573 0.0 732.4 3744 8640 min Winter 1.239 0.0 807.7 5072	8640 min Winter 0.439 0.039	0.0	3.8	3.8 4.0	ОК	
Storn Newn Rain (mm/hr) Flooded Volume (m') Jischarg Volume (m') Time-Peak (mins) 30 min Winter 60 min Winter 66.116 43.030 0.0 128.2 36 60 120 min Winter 120 min Winter 72.87 70.00 0.0 211.9 122 180 360 min Winter 17.049 0.0 264.6 236 60 360 min Winter 10.563 0.0 327.9 440 600 min Winter 7.967 300 min Winter 960 min Winter 10.653 0.0 371.1 554 960 960 min Winter 1.843 0.0 651.5 1852 1852 1850 1650 min Winter 1.843 0.0 2640 min Winter 1.843 0.0 631.8 2508 1852 1852 1850 1852 1852 1852 3700 min Winter 1.843 0.0 631.8 2508 1852 1852 3700 min Winter 1.833 0.0 772.2 4400 10080 min Winter 1.239 0.0	10080 min Winter 0.427 0.027	0.0	3.4	3.4 2.7	ОК	
30 min Winter 66.116 0.0 128.2 36 60 min Winter 43.030 0.0 166.9 64 120 min Winter 27.287 0.0 211.9 122 180 min Winter 20.753 0.0 241.5 180 240 min Winter 17.049 0.0 264.6 236 360 min Winter 12.893 0.0 300.3 344 480 min Winter 10.563 0.0 327.9 440 600 min Winter 9.045 0.0 350.9 476 720 min Winter 7.967 0.0 371.1 554 960 min Winter 3.694 0.0 516.2 1476 2880 min Winter 3.015 0.0 631.8 2508 5760 min Winter 1.843 0.0 686.6 3064 7200 min Winter 1.573 0.0 772.2 4400 10080 min Winter 1.239 0.0 807.7 5072	Storm Event	Rain Floode (mm/hr) Volume (m³)	d Discharge Volume (m³)	Time-Peak (mins)		
30 min Winter 43.030 0.0 126.2 36 60 min Winter 27.287 0.0 211.9 122 180 min Winter 20.753 0.0 241.5 180 240 min Winter 17.049 0.0 264.6 236 360 min Winter 12.893 0.0 300.3 344 480 min Winter 10.563 0.0 327.9 440 600 min Winter 10.563 0.0 327.9 440 600 min Winter 10.563 0.0 327.9 440 600 min Winter 1.9154 0.0 350.9 476 720 min Winter 7.967 0.0 371.1 554 960 min Winter 4.913 0.0 457.5 1026 2160 min Winter 3.694 0.0 516.2 1476 2880 min Winter 3.261 0.0 631.8 2508 5760 min Winter 1.843 0.0 686.6 3064 7200 min Winter 1.382 0.0 772.2 4400 10080 min Winter 1.239 0.0	20 min Wintow	66 116 0	1 1 2 2 2	26		
120 min Winter 17.287 0.0 211.9 122 180 min Winter 20.753 0.0 241.5 180 240 min Winter 17.049 0.0 264.6 236 360 min Winter 12.893 0.0 300.3 344 480 min Winter 10.563 0.0 327.9 440 600 min Winter 9.045 0.0 350.9 476 720 min Winter 7.967 0.0 371.1 554 960 min Winter 4.913 0.0 457.5 1026 2160 min Winter 3.015 0.0 561.5 1852 4320 min Winter 3.015 0.0 631.8 2508 5760 min Winter 1.573 0.0 732.4 3744 8640 min Winter 1.239 0.0 807.7 5072	30 min Winter 60 min Winter	43 030 0	J 128.2	36 64		
180 min Winter 20.753 0.0 241.5 180 240 min Winter 17.049 0.0 264.6 236 360 min Winter 12.893 0.0 300.3 344 480 min Winter 10.563 0.0 327.9 440 600 min Winter 9.045 0.0 350.9 476 720 min Winter 7.967 0.0 371.1 554 960 min Winter 6.521 0.0 404.9 714 1440 min Winter 3.694 0.0 516.2 1476 2880 min Winter 3.015 0.0 631.8 2508 5760 min Winter 1.843 0.0 686.6 3064 7200 min Winter 1.382 0.0 772.2 4400 10080 min Winter 1.239 0.0 807.7 5072	120 min Winter	27.287 0.	211.9	122		
240 min Winter 17.049 0.0 264.6 236 360 min Winter 12.893 0.0 300.3 344 480 min Winter 10.563 0.0 327.9 440 600 min Winter 9.045 0.0 350.9 476 720 min Winter 7.967 0.0 371.1 554 960 min Winter 6.521 0.0 404.9 714 1440 min Winter 4.913 0.0 457.5 1026 2160 min Winter 3.694 0.0 516.2 1476 2880 min Winter 3.015 0.0 631.8 2508 5760 min Winter 1.843 0.0 686.6 3064 7200 min Winter 1.382 0.0 772.2 4400 10080 min Winter 1.239 0.0 807.7 5072	180 min Winter	20.753 0.	241.5	180		
360 min Winter 12.893 0.0 300.3 344 480 min Winter 10.563 0.0 327.9 440 600 min Winter 9.045 0.0 350.9 476 720 min Winter 7.967 0.0 371.1 554 960 min Winter 6.521 0.0 404.9 714 1440 min Winter 4.913 0.0 457.5 1026 2160 min Winter 3.604 0.0 516.2 1476 2880 min Winter 3.015 0.0 561.5 1852 4320 min Winter 1.843 0.0 686.6 3064 7200 min Winter 1.382 0.0 772.2 4400 10080 min Winter 1.239 0.0 807.7 5072	240 min Winter	17.049 0.	264.6	236		
480 min Winter 10.563 0.0 327.9 440 600 min Winter 9.045 0.0 350.9 476 720 min Winter 7.967 0.0 371.1 554 960 min Winter 6.521 0.0 404.9 714 1440 min Winter 4.913 0.0 457.5 1026 2160 min Winter 3.694 0.0 516.2 1476 2880 min Winter 3.015 0.0 561.5 1852 4320 min Winter 1.843 0.0 686.6 3064 7200 min Winter 1.573 0.0 772.2 4400 10080 min Winter 1.239 0.0 807.7 5072	360 min Winter	12.893 0.	300.3	344		
600 min Winter 9.045 0.0 350.9 476 720 min Winter 7.967 0.0 371.1 554 960 min Winter 6.521 0.0 404.9 714 1440 min Winter 4.913 0.0 457.5 1026 2160 min Winter 3.694 0.0 516.2 1476 2880 min Winter 3.015 0.0 631.8 2508 4320 min Winter 2.261 0.0 686.6 3064 7200 min Winter 1.843 0.0 686.6 3064 7200 min Winter 1.382 0.0 772.2 4400 10080 min Winter 1.239 0.0 807.7 5072	480 min Winter	10.563 0.	327.9	440		
720 min Winter 7.967 0.0 371.1 554 960 min Winter 6.521 0.0 404.9 714 1440 min Winter 4.913 0.0 457.5 1026 2160 min Winter 3.694 0.0 516.2 1476 2880 min Winter 3.015 0.0 651.5 1852 4320 min Winter 2.261 0.0 631.8 2508 5760 min Winter 1.843 0.0 686.6 3064 7200 min Winter 1.573 0.0 732.4 3744 8640 min Winter 1.239 0.0 807.7 5072	600 min Winter	9.045 0.	350.9	476		
960 min Winter 6.521 0.0 404.9 714 1440 min Winter 4.913 0.0 457.5 1026 2160 min Winter 3.694 0.0 516.2 1476 2880 min Winter 3.015 0.0 561.5 1852 4320 min Winter 2.261 0.0 631.8 2508 5760 min Winter 1.843 0.0 686.6 3064 7200 min Winter 1.573 0.0 732.4 3744 8640 min Winter 1.382 0.0 772.2 4400 10080 min Winter 1.239 0.0 807.7 5072	720 min Winter	7.967 0.	0 371.1	554		
1440 min Winter 4.913 0.0 457.5 1026 2160 min Winter 3.694 0.0 516.2 1476 2880 min Winter 3.015 0.0 561.5 1852 4320 min Winter 2.261 0.0 631.8 2508 5760 min Winter 1.843 0.0 686.6 3064 7200 min Winter 1.573 0.0 732.4 3744 8640 min Winter 1.382 0.0 772.2 4400 10080 min Winter 1.239 0.0 807.7 5072	960 min Winter	6.521 0.	404.9	714		
2160 min Winter 3.694 0.0 516.2 1476 2880 min Winter 3.015 0.0 561.5 1852 4320 min Winter 2.261 0.0 631.8 2508 5760 min Winter 1.843 0.0 686.6 3064 7200 min Winter 1.573 0.0 732.4 3744 8640 min Winter 1.382 0.0 772.2 4400 10080 min Winter 1.239 0.0 807.7 5072 ©1982-2020 Innovyze	1440 min Winter	4.913 0.	457.5	1026		
2000 min Winter 3.015 0.0 561.5 1852 4320 min Winter 2.261 0.0 631.8 2508 5760 min Winter 1.843 0.0 686.6 3064 7200 min Winter 1.573 0.0 732.4 3744 8640 min Winter 1.382 0.0 772.2 4400 10080 min Winter 1.239 0.0 807.7 5072	2160 min Winter	3.694 0.1	516.2	1050		
1320 min Winter 1.843 0.0 686.6 3064 7200 min Winter 1.573 0.0 732.4 3744 8640 min Winter 1.382 0.0 772.2 4400 10080 min Winter 1.239 0.0 807.7 5072	2080 min Winter	3.UIS U.	J = 501.5	1052 2500		
©1982-2020 Innovyze	5760 min Winter	1 843) 686 6	2000		
©1982-2020 Innovyze	7200 min Winter	1.573 0) 722 4	3744		
©1982-2020 Innovyze	8640 min Winter	1.382 0.	772.2	4400		
©1982-2020 Innovyze	10080 min Winter	1.239 0.	0 807.7	5072		
©1982-2020 Innovyze						
©1982-2020 Innovyze						
©1982-2020 Innovyze						
©1982-2020 Innovyze						
©1982-2020 Innovyze						
©1982-2020 Innovyze						
ΘΙΆΟΖ-ΖΟΖΟ ΙΠΠΟΛΆΣΕ						
	<u></u>	282_2020 T~~	010/20			

DPFI Congulting Engineers		Dago 2
Der Consulting Engineers	240002	raye s
Urmond House	240002	
opper Ormond Quay	Fords LRD	
Dublin /	Desidence of the MT C	— Micro
Date 12/11/2024	Designed by MLC	Drainage
File Attenuation Tank.SRCX	Checked by NJF	
Innovyze	Source Control 2020.1	
	Rainfall Details	
-		
Rainfall Model	FSR Winter Storm	s Yes
Return Period (years)	100 Cv (Summer) 0.750
Region Scot	land and Ireland Cv (Winter) 0.840
M5-60 (mm)	18.400 Shortest Storm (mins) 15
Ratio R	U.262 Longest Storm (mins) T0080
Summer Storms	ies cilmate change	5 +2U
r	'ime Area Diagram	
_		
Т	otal Area (ha) 0.462	
Time (mir	ns) Area Time (mins) Area	
From: To	: (ha) From: To: (ha)	
0	4 0.212 4 8 0.250	

DBFL Consulting Engi	neers					Page 4
Ormond House		240002				
Upper Ormond Quay		Fords 1	LRD			
Dublin 7						Micco
Date 12/11/2024		Designe	ed by MLC	l ,		
File Attenuation Tan	nk.SRCX	Checked	d by NJF			Diamage
Innovyze		Source	Control	2020.1		
		Model De	etails			
	Storage is (Online Cov	ver Level (m) 2.000		
	Cellula	ar Stora	ge Struct	ure		
	Inve	ert Level	(m) 0.40	0 Safety F	actor 2.0	
Infiltrati Infiltrati	on Coefficient on Coefficient	Base (m/ Side (m/	hr) 0.0000 hr) 0.0000	0 Por 0	osity 0.60	
Depth (m) Area	a (m²) Inf. Ar	rea (m²) I	epth (m) A	area (m²) I	nf. Area (m²)
0.000	168.0	0.0	1.061	156.0		0.0
0.190	168.0	0.0	1.250	156.0		0.0
0.191	294.0	0.0	1.251	0.0		0.0
1.060	358.0	0.0				
	Hydro-Brake	® Optimu	m Outflov	V Control		
	Uni	t Reference	ce MD-SHE-(0101-5000-1	324-5000	
	Desi	gn Head (r	n)		1.324	
	Design	Flow (1/s	B)	a	5.0	
		Objectiv	o™ ve Minimis	Ca se upstream	storage	
		Applicatio	on	oc appereas	Surface	
	Sum	p Availab	le		Yes	
	Di	ameter (mr	n)		101	
Minimum (Inver Outlet Pipe Di	t Level (1 ameter (mr	n)		0.326 150	
Suggest	ted Manhole Di	ameter (m	n)		1200	
	Control P	oints	Head (m)	Flow (l/s)	
D	esign Point (C	Calculated) 1.324	5.	0	
		Flush-Flo	™ 0.396	5.	0	
м	oon Flow over	Kick-Flo	® 0.818	4.	0	
141	ean FIOW Over	neau kang	e -	4.	4	
The hydrological calcu	ulations have	been base	d on the He	ead/Dischar	ge relatio	onship for the
Hydro-Brake® Optimum a Hydro-Brake Optimum®] invalidated	as specified. be utilised th	Should an en these a	nother type storage rou	e of contro uting calcu	ol device c lations wi	other than a .ll be
Depth (m) Flow (l/s)	Depth (m) Flo	w (l/s) [Oepth (m) H	low (l/s)	Depth (m)	Flow (l/s)
0.100 3.3	1.200	4.8	3.000	7.3	7.000	10.9
0.200 4.6	1.400	5.1	3.500	7.9	7.500	11.3
0.300 4.9	1.600	5.5	4.000	8.4	8.000	11.7
	1.800	5.8	4.500	8.9	8.500	12.0
0.600 4.9	2.200	6.3	5.500	9.8	9.000	12.7
0.800 4.1	2.400	6.6	6.000	10.2	2.500	12.7
1.000 4.4	2.600	6.8	6.500	10.6		
		·				
	©19	82-2020	Innovyze			

Appendix C : Irish Water Confirmation of Feasibility

CONFIRMATION OF FEASIBILITY

Gabriel Karpavicius

14 South Mall Cork Co. Cork T12 CT91

24 April 2024

Our Ref: CDS24001285 Pre-Connection Enquiry Centre Park Road, Cork, Co. Cork

Dear Applicant/Agent,

We have completed the review of the Pre-Connection Enquiry.

Uisce Éireann has reviewed the pre-connection enquiry in relation to a Water & Wastewater connection for a Housing Development of 230 unit(s) at Centre Park Road, Cork, Co. Cork (the Development).

Based upon the details provided we can advise the following regarding connecting to the networks;

Feasible Subject to Upgrade: Water Connection In order to accommodate the proposed connection, approximately 150m of water network upgrades will be required to provide additional network capacity. Uisce Éireann does not currently have any plans to undertake these works, therefore the applicant will be required to fund these local network upgrades. The fee for these works will be calculated at a connection application stage. This area forms part of the Cork Docklands Capital Investment Project, where proposals have been made to provide the infrastructure necessary to service this Development and the surrounding lands. It should be noted however that timeframes to deliver the water infrastructure in this area are not currently available, hence network upgrades stated above would be necessary to facilitate a connection in advance of the completion of these works. Wastewater -Feasible without infrastructure upgrade by Uisce

Wastewater - Feasible without infrastructure upgrade by Uisce
 Connection Éireann

Stiúrthóirí / Directors: Tony Keohane (Cathaoirleach / Chairman), Niall Gleeson (POF / CEO), Christopher Banks, Fred Barry, Gerard Britchfield, Liz Joyce, Patricia King, Eileen Maher, Cathy Mannion, Michael Walsh.

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Uisce Éireann PO Box 448 South City Delivery Office Cork City

www.water.ie

Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin, Ireland D01NP86

Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Uisce Éireann is a design activity company, limited by shares. Cláraithe in Éirinn Uimh.: 530363 / Registered in Ireland No.: 530363.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Uisce Éireann infrastructure. Before the Development can be connected to our network(s) you must submit a connection application and be granted and sign a connection agreement with Uisce Éireann.

As the network capacity changes constantly, this review is only valid at the time of its completion. As soon as planning permission has been granted for the Development, a completed connection application should be submitted. The connection application is available at <u>www.water.ie/connections/get-connected/</u>

Where can you find more information?

- Section A What is important to know?
- Section B Details of Uisce Éireann's Network(s)

This letter is issued to provide information about the current feasibility of the proposed connection(s) to Uisce Éireann's network(s). This is not a connection offer and capacity in Uisce Éireann's network(s) may only be secured by entering into a connection agreement with Uisce Éireann.

For any further information, visit <u>www.water.ie/connections</u>, email <u>newconnections@water.ie</u> or contact 1800 278 278.

Yours sincerely,

Dermot Phelan Connections Delivery Manager

Section A - What is important to know?

What is important to know?	Why is this important?
Do you need a contract to connect?	 Yes, a contract is required to connect. This letter does not constitute a contract or an offer in whole or in part to provide a connection to Uisce Éireann's network(s).
	 Before the Development can connect to Uisce Éireann's network(s), you must submit a connection application <u>and</u> <u>be granted and sign</u> a connection agreement with Uisce Éireann.
When should I submit a Connection Application?	 A connection application should only be submitted after planning permission has been granted.
Where can I find information on connection charges?	Uisce Éireann connection charges can be found at: <u>https://www.water.ie/connections/information/charges/</u>
Who will carry out the connection work?	 All works to Uisce Éireann's network(s), including works in the public space, must be carried out by Uisce Éireann*.
	*Where a Developer has been granted specific permission and has been issued a connection offer for Self-Lay in the Public Road/Area, they may complete the relevant connection works
Fire flow Requirements	• The Confirmation of Feasibility does not extend to fire flow requirements for the Development. Fire flow requirements are a matter for the Developer to determine.
	What to do? - Contact the relevant Local Fire Authority
Plan for disposal of storm water	The Confirmation of Feasibility does not extend to the management or disposal of storm water or ground waters.
	 What to do? - Contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges.
Where do I find details of Uisce Éireann's network(s)?	 Requests for maps showing Uisce Éireann's network(s) can be submitted to: <u>datarequests@water.ie</u>

What are the design requirements for the connection(s)?	 The design and construction of the Water & Wastewater pipes and related infrastructure to be installed in this Development shall comply with <i>the Uisce Éireann</i> <i>Connections and Developer Services Standard Details</i> <i>and Codes of Practice,</i> available at <u>www.water.ie/connections</u>
Trade Effluent Licensing	 Any person discharging trade effluent** to a sewer, must have a Trade Effluent Licence issued pursuant to section 16 of the Local Government (Water Pollution) Act, 1977 (as amended).
	 More information and an application form for a Trade Effluent License can be found at the following link: <u>https://www.water.ie/business/trade-effluent/about/</u>
	**trade effluent is defined in the Local Government (Water Pollution) Act, 1977 (as amended)

Section B – Details of Uisce Éireann's Network(s)

The map included below outlines the current Uisce Éireann infrastructure adjacent the Development: To access Uisce Éireann Maps email <u>datarequests@water.ie</u>

Reproduced from the Ordnance Survey of Ireland by Permission of the Government. License No. 3-3-34

Note: The information provided on the included maps as to the position of Uisce Éireann's underground network(s) is provided as a general guide only. The information is based on the best available information provided by each Local Authority in Ireland to Uisce Éireann.

Whilst every care has been taken in respect of the information on Uisce Éireann's network(s), Uisce Éireann assumes no responsibility for and gives no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided, nor does it accept any liability whatsoever arising from or out of any errors or omissions. This information should not be solely relied upon in the event of excavations or any other works being carried out in the vicinity of Uisce Éireann's underground network(s). The onus is on the parties carrying out excavations or any other works to ensure the exact location of Uisce Éireann's underground network(s) is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

Appendix D : SUDS Treatment and Interception Volume Calculations

TITLE Fords LRD		Job Reference 240002	
SUBJECT GREEN ROOF DESIGN		Calc. Sheet No. 1	
DRAWING NUMBER 240002-X-91-Z00-DTM-DR-DBFL-CE-1310	Calculations by WM	Checked by NJF	Date 01/11/2024
INPUT DATA			Total Applicable
Green Roof Area (A)		1527.0 m ²	Roof Area
¹ Filter Layer Depth (d)		0.200 m	
¹ Filter Layer Voids Ratio (η)		<mark>30.0</mark> %	% Green Roof Area 70 %
TREATMENT VOLUME			
² Treatment Volume (V _T)		91.6 m ³	Provided Treatment Volume
EVAPOTRANSPIRATION / INTERCEPTION VOLUME			
³ Evapotranspiration Rate per Day		3.00 mm/day	/
Evapotranspiration Volume		4.6 m ³	Provided Interception Volume
Notes:			
1 Filter Bed depth typically between 0.15 and 0.35m. This consists of	the substrate and drain	nage layer.	
2 Treatment Volume Vt (m ³) = Green Roof Area (m ⁴) x d x η 3 Assumed 2mm evaporation and 3mm transpiration			
5 Assumed 2mm evaporation and 5mm transpiration.			

TITLE Fords LRD		Job Reference 240002	
SUBJECT GREEN/PERMEABLE PODIUM DESIGN		Calc. Sheet No.	
DRAWING NUMBER 240002-X-91-Z00-DTM-DR-DBFL-CE-1310	Calculations by WM	Checked by NJF	Date 01/11/2024
INPUT DATA			
Green Podium Area (A)		1308.2 m ²	
¹ Filter Layer Depth (d)		0.200 m	
¹ Filter Layer Voids Ratio (η)		30.0 %	
TREATMENT VOLUME			
² Treatment Volume (V _T)		78.5 m ³	Provided Treatment Volume
EVAPOTRANSPIRATION / INTERCEPTION VOLUME			
³ Evapotranspiration Rate per Day		3.00 mm/day	
Evapotranspiration Volume		3.9 m ³	Provided Interception Volume
Notes:			
1 Filter Bed depth typically between 0.15 and 0.35m. This consists of	the substrate and o	drainage layer.	
2 Treatment Volume Vt (m ³) = Green Roof Area (m ²) x d x η			
3 Assumed 2mm evaporation and 3mm transpiration.			

TITLE Fords LRD		Job Reference 240002		
SUBJECT Rain Garden Area No.1		Calc. Sheet No. 3	СОМБИТ	
DRAWING NUMBER 240002-X-05-Z00-XXX-DR-DBFL-CI	Calculatic E-1301 V	ns by Checked by /M NJF	Date 01/11/2024	
INPUT DATA				
Effective Impermeable Area for Trea	itment (A)	795.5	m ²	
Filter Bed Depth (L)		0.500	m	
Coefficient of Permeability of Filter M	ledium (k)	0.000010	m/s	
² Average Height of Water above Filte	er Bed (h)	0.020	m	
Time Required for Percolation (t)		48.0	hr	
AREA				
Surface Area (A _f)		5.31	m²	
Provided Surface Area		108.50	m²	
TREATMENT VOLUME				
³ Treatment Volume (V _T)		9.5	m ³ Provided Treatment Volume	•
INFILTRATION / INTERCEPTION V	OLUME			
Subgrade Infiltration Rate per hour		36.000	mm/hr Table 25.1 SuDS manual ar	nd SI
⁵ Subgrade Infiltration Rate (f)		0.01000	mm/s	
⁴ Subgrade Infiltration Volume		68.435	m ³	
Transpiration Rate per day		3.000	mm/day	
Transpiration		0.326	m ³	
Additional Storage Depth Below Outl	let Invert	0.050	m	
Revoir Storage		2.170	m ³	
Total Infiltration/Interception Volu	me	70.930	m ³ Provided Interception Volum	ıe
Notes:				
 2 h = Half maximum height, where hmax <=2 3 Treatment Volume Vt (m³) = Impermeable a 4 Volume calculated using 6 hour storm ever 	2m Area (ha) x 15mm x 10 x 80% (i nt.	GDSDS Section 6.3.1.2.1). Table: 1		
5 Source ' The SuDS Manual Table 25.1'.		Materia	al Infiltration Rate (m/s)
		Source: SUDS Man	ual Section 25-1	
Area of Bioretention/Raingarden Filter	V _T .L	Silty Loam	0.000002	
Bed =		Sand	0.00000028 - 0.000028	3
	k(h+L)t	Loamy sand	0.000000028 - 0.000000	28
		Loam	0.000000028 - 0.000000	028
		Silty Loam	0.0000000014 - 0.000000	014

TITLE Fords LRD		Job Reference 240002	
SUBJECT Rain Garden Area No.2		Calc. Sheet No. 4	
DRAWING NUMBER 240002-X-05-Z00-XXX-DR-DBFL-CE-1301	Calculations by WM	Checked by NJF	Date 01/11/2024
INPUT DATA			
Effective Impermeable Area for Treatment (A)		741.5 m ²	
Filter Bed Depth (L)		0.500 m	
Coefficient of Permeability of Filter Medium (k)		0.000010 m/s	
² Average Height of Water above Filter Bed (h)		0.020 m	
Time Required for Percolation (t)		48.0 hr	
AREA			
Surface Area (A _f)		4.95 m ²	
Provided Surface Area		160.50 m ²	
TREATMENT VOLUME			
³ Treatment Volume (V _T)		8.9 m ³	Provided Treatment Volume
INFILTRATION / INTERCEPTION VOLUME			
Subgrade Infiltration Rate per hour		36.000 mm/hr	Table 25.1 SuDS manual and SI
⁵ Subgrade Infiltration Rate (f)		0.01000 mm/s	
⁴ Subgrade Infiltration Volume		89.397 m ³	
Transpiration Rate per day		3.000 mm/day	
Transpiration		0.482 m ³	
Additional Storage Depth Below Outlet Invert		0.050 m	
Revoir Storage		3.210 m ³	
Total Infiltration/Interception Volume		93.089 m ³	Provided Interception Volume
Notes:			
 2 h = Half maximum height, where hmax <=2m 3 Treatment Volume Vt (m³) = Impermeable Area (ha) x 15mm x 4 Volume calculated using 6 hour storm event. 	(10 x 80%) (GDSDS \$	Section 6.3.1.2.1). Table: 1	
5 Source ' The SuDS Manual Table 25.1'.		Material	Infiltration Rate (m/s)
V I		Source: SUDS Manual Section	25-1
Area of Bioretention/Raingarden Filter V_{T} . L		Silty Loam	0.000002
k(h+l.)t		Loamy sand	0.000000028 - 0.000028
K(III L)t		Sandy loam	0.000000014 - 0.00000014
		Loam	0.0000000028 - 0.000000028
		Silty Loam	0.0000000014 - 0.0000000014

TITLE Fords LRD		Job Reference 240002	
subject Rain Garden Area No.3		Calc. Sheet No. 5	
DRAWING NUMBER 240002-X-05-Z00-XXX-DR-DBFL-CE-1301	Calculations by WM	Checked by NJF	Date 01/11/2024
INPUT DATA			
Effective Impermeable Area for Treatment (A)		196.8 m ²	
Filter Bed Depth (L)		0.500 m	
Coefficient of Permeability of Filter Medium (k)		0.000010 m/s	
² Average Height of Water above Filter Bed (h)		0.020 m	
Time Required for Percolation (t)		48.0 hr	
AREA			
Surface Area (A _f)		1.31 m ²	
Provided Surface Area		59.80 m ²	
TREATMENT VOLUME			
³ Treatment Volume (V _T)		2.4 m ³	Provided Treatment Volume
INFILTRATION / INTERCEPTION VOLUME			
Subgrade Infiltration Rate per hour		36.000 mm/hr	Table 25.1 SuDS manual and SI
⁵ Subgrade Infiltration Rate (f)		0.01000 mm/s	
⁴ Subgrade Infiltration Volume		46.324 m ³	
Transpiration Rate per day		3.000 mm/day	
Transpiration		0.179 m ³	
Additional Storage Depth Below Outlet Invert		0.050 m	
Revoir Storage		1.196 m ³	
Total Infiltration/Interception Volume		47.699 m ³	Provided Interception Volume
otes:			
² h = Half maximum height, where hmax <=2m ³ Treatment Volume Vt (m ³) = Impermeable Area (ha) x 15mm 4 Volume calculated using 6 hour storm event.	1 x 10 x 80% (GDSDS :	Section 6.3.1.2.1). Table: 1	
Source ' The SuDS Manual Table 25.1'.		Material	Infiltration Rate (m/s)
		Source: SUDS Manual Section	25-1
Area of Bioretention/Raingarden Filter $V_T \cdot L$		Silty Loam	0.000002
Bed =		Sand	0.00000028 - 0.000028
k(h+L)t		Loamy sand	0.000000028 - 0.00000028
		Loam	0.0000000014 - 0.00000014
		Silby Loom	0.000000014 - 0.000000014

TITLE Fords LRD		Job Reference 240002			
SUBJECT Rain Garden Area No.4		Calc. Sheet No. 6			
DRAWING NUMBER 240002-X-05-Z00-XXX-DR-DBFL-CE-1301	Calculations by WM	Checked by NJF	Date 01/11/2024		
INPUT DATA					
Effective Impermeable Area for Treatment (A)		125.5 m ²			
Filter Bed Depth (L)		0.500 m			
Coefficient of Permeability of Filter Medium (k)		0.000010 m/s			
² Average Height of Water above Filter Bed (h)		0.020 m			
Time Required for Percolation (t)		48.0 hr			
AREA					
Surface Area (A _f)		0.84 m ²			
Provided Surface Area		40.50 m ²			
TREATMENT VOLUME					
³ Treatment Volume (V _T) 1.5 m ³ Provided Treatment Volume			Provided Treatment Volume		
INFILTRATION / INTERCEPTION VOLUME					
Subgrade Infiltration Rate per hour		36.000 mm/hr	Table 25.1 SuDS manual and SI		
⁵ Subgrade Infiltration Rate (f)		0.01000 mm/s			
⁴ Subgrade Infiltration Volume		36.240 m ³	<u>16.240</u> m ³		
Transpiration Rate per day		3.000 mm/day			
Transpiration		0.122 m ³			
Additional Storage Depth Below Outlet Invert		0.050 m			
Revoir Storage		0.810 m ³			
Total Infiltration/Interception Volume		37.172 m ³	Provided Interception Volume		
Notes:					
 2 h = Half maximum height, where hmax <=2m 3 Treatment Volume Vt (m³) = Impermeable Area (ha) x 15mm x 4 Volume calculated using 6 hour storm event. 	:10 x 80% (GDSDS \$	Section 6.3.1.2.1). Table: 1			
5 Source ' The SuDS Manual Table 25.1'.		Material	Infiltration Rate (m/s)		
		Source: SUDS Manual Section	25-1		
Area of Bioretention/Raingarden Filter		Silty Loam	0.000002		
Bed =		Sand	0.00000028 - 0.000028		
k(h+L)t		Loamy sand	0.000000028 - 0.00000028		
		Sandy loam	0.000000014 - 0.00000014		
		Silty Loam	0.00000000014 - 0.0000000014		

NGINEERS		
NGINEERS		
Provided Treatment Volume		
Table 25.1 SuDS manual and SI		
m ³		
3.000 mm/day		
_		

TITLE Fords LRD		Job Reference 240002			
SUBJECT Rain Garden Area No.6		Calc. Sheet No. 8			
DRAWING NUMBER 240002-X-05-Z00-XXX-DR-DBFL-CE-1301	Calculations by WM	Checked by NJF	Date 01/11/2024		
INPUT DATA					
Effective Impermeable Area for Treatment (A)		239.8 m ²			
Filter Bed Depth (L)		0.500 m			
Coefficient of Permeability of Filter Medium (k)		0.000010 m/s			
² Average Height of Water above Filter Bed (h)		0.020 m			
Time Required for Percolation (t)		48.0 hr			
AREA					
Surface Area (A _f)		1.60 m ²			
Provided Surface Area		56.00 m ²			
TREATMENT VOLUME					
³ Treatment Volume (V _T) 2.9 m ³ Provided Treatment Volume			Provided Treatment Volume		
INFILTRATION / INTERCEPTION VOLUME					
Subgrade Infiltration Rate per hour		36.000 mm/hr	Table 25.1 SuDS manual and SI		
⁵ Subgrade Infiltration Rate (f)		0.01000 mm/s			
⁴ Subgrade Infiltration Volume		44.424 m ³			
Transpiration Rate per day		3.000 mm/day			
Transpiration		0.168 m ³			
Additional Storage Depth Below Outlet Invert		0.050 m			
Revoir Storage		1.120 m ³			
Total Infiltration/Interception Volume		45.712 m ³	Provided Interception Volume		
Notes:					
 2 h = Half maximum height, where hmax <=2m 3 Treatment Volume Vt (m³) = Impermeable Area (ha) x 15mm x 4 Volume calculated using 6 hour storm event. 	< 10 x 80% (GDSDS S	Section 6.3.1.2.1).			
5 Source ' The SuDS Manual Table 25.1'.		Material	Infiltration Rate (m/s)		
		Source: SUDS Manual Section	25-1		
Area of Bioretention/Raingarden Filter		Silty Loam	0.000002		
Bed =		Sand	0.00000028 - 0.000028		
k(h+L)t		Loamy sand	0.000000028 - 0.00000028		
		Loam	0.0000000028 - 0.000000028		
		Silty Loam	0.0000000014 - 0.0000000014		

TITLE Fords LRD		Job Reference 240002			
SUBJECT		Calc. Sheet No.			
Rain Garden Area No.7		9			
DRAWING NUMBER	Calculations by	Checked by	Date		
240002-X-05-Z00-XXX-DR-DBFL-CE-1301	WM	NJF	01/11/2024		
INPUT DATA					
Effective Impermeable Area for Treatment (A)		216.0 m ²			
Filter Bed Depth (L)		0.500 m			
Coefficient of Permeability of Filter Medium (k)		0.000010 m/s			
² Average Height of Water above Filter Bed (h)		0.020 m			
Time Required for Percolation (t)		48.0 hr			
AREA					
Surface Area (A _t)		1.44 m ²			
Provided Surface Area		47.50 m ²			
TREATMENT VOLUME					
³ Treatment Volume (V _T)		2.6 m ³	Provided Treatment Volume		
INFILTRATION / INTERCEPTION VOLUME					
Subgrade Infiltration Rate per hour		36.000 mm/hr	Table 25.1 SuDS manual and SI		
⁵ Subgrade Infiltration Rate (f)		0.01000 mm/s			
⁴ Subgrade Infiltration Volume		40.034 m ³			
Transpiration Rate per day		3.000 mm/day			
Transpiration		0.143 m ³	3 m ³		
Additional Storage Depth Below Outlet Invert		0.050 m			
Revoir Storage		0.950 m ³			
Total Infiltration/Interception Volume		41.126 m ³	Provided Interception Volume		
Notes:					
2 h = Half maximum height, where hmax <=2m					
 I reatment Volume Vt (m^o) = Impermeable Area (ha) x 15mm x 4 Volume calculated using 6 hour storm event 	10 x 80% (GDSDS S	Section 6.3.1.2.1). Table: 1			
5 Source ' The SuDS Manual Table 25.1'.		Material	Infiltration Rate (m/s)		
		Source: SUDS Manual Section	25-1		
Area of Bioretention/Raingarden Filter		Silty Loam	0.00002		
Bed =		Sand	0.00000028 - 0.000028		
k(h+L)t		Loamy sand	0.000000028 - 0.00000028		
		Sandy loam	0.000000014 - 0.00000014		
		Loam Silty Loam	0.0000000028 - 0.000000028		
		Only Loan			

TITLE Fords LRD		Job Reference 240002			
SUBJECT Rain Garden Area No.8		Calc. Sheet No.			
DRAWING NUMBER 240002-X-05-Z00-XXX-DR-DBFL-CE-1301	Calculations by WM	Checked by NJF	Date 01/11/2024		
INPUT DATA					
Effective Impermeable Area for Treatment (A)		158.4 m ²			
Filter Bed Depth (L)		0.500 m			
Coefficient of Permeability of Filter Medium (k)		0.000010 m/s			
² Average Height of Water above Filter Bed (h)		0.020 m			
Time Required for Percolation (t)		48.0 hr			
AREA					
Surface Area (A _f)		1.06 m ²			
Provided Surface Area		48.00 m ²			
TREATMENT VOLUME					
³ Treatment Volume (V _T) 1.9 m ³ Provided			Provided Treatment Volume		
INFILTRATION / INTERCEPTION VOLUME					
Subgrade Infiltration Rate per hour		36.000 mm/hr	Table 25.1 SuDS manual and SI		
⁵ Subgrade Infiltration Rate (f)		0.01000 mm/s			
⁴ Subgrade Infiltration Volume		40.298 m ³			
Transpiration Rate per day		3.000 mm/day			
Transpiration		0.144 m ³	0.144 m ³		
Additional Storage Depth Below Outlet Invert		0.050 m			
Revoir Storage		0.960 m ³			
Total Infiltration/Interception Volume		41.402 m ³	Provided Interception Volume		
Notes:					
 2 h = Half maximum height, where hmax <=2m 3 Treatment Volume Vt (m³) = Impermeable Area (ha) x 15mm x 4 Volume calculated using 6 hour storm event. 	< 10 x 80% (GDSDS \$	Section 6.3.1.2.1). Table: 1			
5 Source ' The SuDS Manual Table 25.1'.		Material	Infiltration Rate (m/s)		
		Source: SUDS Manual Section 2	25-1		
Area of Bioretention/Raingarden Filter		Silty Loam	0.000002		
Bed =		Sand	0.00000028 - 0.000028		
k(h+L)t		Loamy sand	0.000000028 - 0.00000028		
		Sandy loam	0.000000014 - 0.00000014		
		Silty Loam	0.0000000028 - 0.000000028		
		Only Loan	0.000000014 0.00000014		

TITLE Fords LRD		Job Reference 240002			
SUBJECT Rain Garden Area No.9		Calc. Sheet No. 11			
DRAWING NUMBER 240002-X-05-Z00-XXX-DR-DBFL-CE-1301	Calculations by WM	Checked by NJF	Date 01/11/2024		
INPUT DATA					
Effective Impermeable Area for Treatment (A)		508.3 m ²			
Filter Bed Depth (L)		0.500 m			
Coefficient of Permeability of Filter Medium (k)		0.000010 m/s			
² Average Height of Water above Filter Bed (h)		0.020 m			
Time Required for Percolation (t)		48.0 hr			
AREA					
Surface Area (A _f)		3.39 m ²			
Provided Surface Area		110.00 m ²			
TREATMENT VOLUME					
³ Treatment Volume (V _T)		6.1 m ³	Provided Treatment Volume		
INFILTRATION / INTERCEPTION VOLUME					
Subgrade Infiltration Rate per hour		36.000 mm/hr	Table 25.1 SuDS manual and SI		
⁵ Subgrade Infiltration Rate (f)		0.01000 mm/s			
⁴ Subgrade Infiltration Volume		69.069 m ³			
Transpiration Rate per day		3.000 mm/day			
Transpiration		0.330 m ³			
Additional Storage Depth Below Outlet Invert		0.050 m			
Revoir Storage		2.200 m ³			
Total Infiltration/Interception Volume		71.599 m ³	Provided Interception Volume		
Notes:					
 2 h = Half maximum height, where hmax <=2m 3 Treatment Volume Vt (m³) = Impermeable Area (ha) x 15mm x 4 Volume calculated using 6 hour storm event. 	:10 x 80% (GDSDS \$	Section 6.3.1.2.1). Table: 1			
5 Source ' The SuDS Manual Table 25.1'.		Material	Infiltration Rate (m/s)		
		Source: SUDS Manual Section	25-1		
Area of Bioretention/Raingarden Filter		Silty Loam	0.000002		
Bed =		Sand	0.00000028 - 0.000028		
k(h+L)t		Loamy sand	0.0000000028 - 0.00000028		
		I nam	0.0000000028 - 0.000000028		
		Silty Loam	0.0000000014 - 0.000000014		

TITLE Fords LRD		Job Reference 240002			
SUBJECT Rain Garden Area No.10		Calc. Sheet No.			
DRAWING NUMBER 240002-X-05-Z00-XXX-DR-DBFL-CE-1301	Calculations by WM	Checked by NJF	Date 01/11/2024		
INPUT DATA					
Effective Impermeable Area for Treatment (A)		406.4 m ²			
Filter Bed Depth (L)		0.500 m			
Coefficient of Permeability of Filter Medium (k)		0.000010 m/s			
² Average Height of Water above Filter Bed (h)		0.020 m			
Time Required for Percolation (t)		48.0 hr			
AREA					
Surface Area (A _f)		2.71 m ²			
Provided Surface Area		48.40 m ²			
TREATMENT VOLUME					
³ Treatment Volume (V_T)		4.9 m ³	Provided Treatment Volume		
INFILTRATION / INTERCEPTION VOLUME					
Subgrade Infiltration Rate per hour		36.000 mm/hr	Table 25.1 SuDS manual and SI		
⁵ Subgrade Infiltration Rate (f)		0.01000 mm/s			
⁴ Subgrade Infiltration Volume		40.509 m ³			
Transpiration Rate per day		3.000 mm/day	3.000 mm/day		
Transpiration		0.145 m ³			
Additional Storage Depth Below Outlet Invert		0.050 m			
Revoir Storage		0.968 m ³			
Total Infiltration/Interception Volume		41.622 m ³	Provided Interception Volume		
Notes:					
 ² h = Half maximum height, where hmax <=2m ³ Treatment Volume Vt (m³) = Impermeable Area (ha) x 15mm x 10 x 80% (GDSDS Section 6.3.1.2.1). ⁴ Volume calculated using 6 hour storm event. Table: 1 					
5 Source ' The SuDS Manual Table 25.1'.		Material	Infiltration Rate (m/s)		
V , I		Source: SUDS Manual Section	0.000002		
Area of Bioretention/Raingarden Filter		Sand	0.000002		
k(h+L)t		Loamy sand	0.000000028 - 0.00000028		
		Sandy loam	0.000000014 - 0.00000014		
		Loam	0.0000000028 - 0.000000028		
		Silty Loam	0.0000000014 - 0.0000000014		

TITLE		Job Reference		
Fords LRD		240002		
SUBJECT		Calc. Sheet No.		
Interception/Treatment Volume Summary		13		
				CONSULTING ENGINEERS
DRAWING NUMBER	Calculations by	Checked by	Date	
-	VVIVI	NJF	01/11/2024	
INPUT DATA				
Treatment				
reatment				
Treatment Volume Required	80.8	m ³		
Treatment Mechanism	Treatment Volur	nes		
Owner Dest	04.0	3		
Green Root	91.6			
Bioretention / Rain Gardens	43.4	m ³		
Differention / Nam Cardens	J			
Total Volumes Provided	213.51	m ³		
Check Provided Volumes are greater				
than Required Volumes	PASS			
Interception				
Interception Volume Required	26.0	m ³		
Interception volume Required	20.9	m		
Interception Mechanism	Interception Vol	umes		
Green Roof	4.6	m ³		
Green Podium	3.9			
Bioretention / Rain Gardens	538.8	m ³		
Total Volumes Provided	547.28	m ³		
Total volumes Fronded	047.20			
Check Provided Volumes are greater				
than Required Volumes	PASS			

Appendix E : Uisce Éireann Statement of Design Compliance

Appendix F : Response to 32B Opinion

November 2024

RE: CCC Reference LRD 002-24 – Former Ford Distribution Site

Further to the above project, reference LRD 002-24, and response to Section 32B Opinion from the council, please find below our responses to the engineering items specifically. Our responses are numbered to correspond with the original Cork City Council numbering system in the Opinion.

6. Consideration of the proposals to address the following Strategic Transport related requirements (as set out in the Strategic Transport Planning Report attached in Appendix C):

a) The inclusion of a direct pedestrian access from Street C to Block A is welcome, however, the applicant is requested to further consider the issue of permeability and connectivity, particularly with regard to improvement of the public realm design interface to ensure a direct hard standing access is provided and the route is not blocked by street furniture.

Response: Permeability within the site, to Centre Park Road and to the adjacent SHD have been considered and prioritized by creating a large shared surface linking the proposed development with Street C of the adjacent development and the Centre Park Road. All direct pedestrian links onto the proposed cycle and pedestrian tracks are designed to ensure clear access without blockage from landscaping or street furniture.

c) To avoid the provision of a further street entrance along Centre Park Road the applicant is requested to further consider relocating the proposed vehicular entrance serving the undercroft car park to Street C with the proposed disabled parking bay removed completely (all parking should be provided within the undercroft car park). The removal of this entrance and associated roadspace will provide an opportunity to create an enhanced public space within the development lands and remove potential conflicts along Centre Park Road.

Response: The vehicular entrance has been amended to enter via street C of the adjoining SHD, thus removing the additional entrance off Centre Park Road, refer to DBFL drawing X-04-Z00-XXX-DR-DBFL-CE-1201 Roads Layout.

9. Consideration of the proposals to address the following Urban Roads & Street Design related requirements (as set out in the Urban Roads & Street Design Report attached in Appendix C):

b) The applicant is requested to submit confirmation of intervisibility of drivers egressing the car parking and a driver carrying out maneuvers to any parking bays/set-downs adjacent to the vehicular access/egress.

Registered Office Ormond House Upper Ormond Quay Dublin 7, Ireland

Dublin 7, Ireland D07 W704

+ 353 1 400 4000 www.dbfl.ie Cork Office 14 South Mall Cork, Ireland TT2 CT91

00 + 353 21 202 4538

Galway Office Odeon House 7 Eyre Square Galway, Ireland H91 YNC8

+353 91 335599

Waterford Office Suite 8b The Atrium Maritana Gate, Canada St Waterford, Ireland X91 W028

+ 353 51 309 500

DBFL Consulting Engineers Limited trading as DBFL Consulting Engineers

Response: The vehicles egressing the car parking can see further than half way up the external disabled parking bay when approaching the exit to the undercroft parking area ensuring there is sufficient intervisibility between the anyone exiting the parking area and a driving carrying out a maneuver in the disabled bay.

10. Consideration of the proposals to address the following Traffic Regulation & Safety related requirements (as set out in the Traffic Regulation & Safety Report attached in Appendix C):

a) The applicant is to clarify if permitted developments in the area (adjoining Ford site, Gouldings site etc) are taken into account in the traffic assessment as this is not outlined in the TTA.

Response: The permitted development in the vicinity of the subject site has been considered and included in the Traffic and Transportation Assessment report (240002-X-90-X-XXX-RP-DBFL-CE-0001). Section 5.3.1 of the TTA outlines a total of four separate 'Committed' development schemes near the subject site, ensuring that the impacts of these developments have been comprehensively accounted in the Traffic Assessment.

b) The applicant is requested to ensure that an assessment of the impact of construction traffic on the local network should be carried out taking into account the timelines for other permitted developments in the area that may have similar construction phase timings.

Response: The potential impact of construction traffic of proposed development on the local network has been assessed and demonstrated in Section 6.4 of the Traffic and Transportation Assessment report (TTA). The construction traffic associated with the permitted developments in the vicinity has also been accounted as part of the construction impact assessment.

c) The interaction of the permitted Street C entrance on the adjoining development and the proposed undercroft parking vehicular entrance in terms of how vehicles, pedestrians and cyclists interact is not shown. There is a concern in relation to introducing additional conflict points here from a road safety point of view. The preference would be for the side by side entrances to be combined to reduced confusion for road users and reduce conflict points. The applicant is requested that further consideration should be given to same.

Response: The vehicular entrance has been amended to enter via street C of the adjoining SHD, thus removing the additional entrance off Centre Park Road, refer to DBFL drawing X-04-Z00-XXX-DR-DBFL-CE-1201 Roads Layout.

d) The applicant is requested to further consider improving the access to the Block A cycle storage area, with particular consideration given to ensuring direct access from the Street C elevation is also provided.

Registered Office Ormond House Upper Ormond Quay Dublin 7, Ireland D07 W704

+ 353 1 400 4000 www.dbfl.ie Cork Office 14 South Mall Cork, Ireland TT2 CT91

+ 353 21 202 4538

Galway Office Odeon House 7 Eyre Square Galway, Ireland H91 YNC8

+353 91 335599

Waterford Office Suite 8b The Atrium Maritana Gate, Canada St Waterford, Ireland X91 W028

+ 353 51 309 500

DBFL Consulting Engineers Limited trading as DBFL Consulting Engineers

Response: Cycle access to the proposed development has been amended to be via street C of the adjoining SHD development, thus providing access to the Block A cycle storage area.

e) A mobility management plan should be submitted as part of the planning application documentation.

Response: Please refer to DBFL report 240002-X-90-X-XXX-RP-DBFL-CE-0002 Mobility Management Plan.

f) An outline CTMP should be submitted as part of the planning application documentation.

Response: An outlined CTMP has been included in the CEMP included in this submission. Refer to reports 240002-X-X-X-XXX-RP-DBFL-CE-0003 Construction and Environmental Management Plan.

11. Consideration of the proposals to address the following Drainage related requirements (as set out in the Drainage Report attached in Appendix C):

a) A copy of the Statement of Design Acceptance from Uisce Eireann (following submittal of full and final designs to Uisce Éireann) and full design details and drawings to be included with the planning application.

Response: A SODA has been included in Appendix E of DBFL report 240002-X-X-X-XXX-RP-DBFL-CE-0001 Infrastructure Design Report.

b) The applicant is requested to provide further consideration of, and possible amendment to, the documents and/or design proposals in respect of the proposed surface water management arrangements of the development, with particular focus on the following:

The Site Services Layout drawing shows the proposed storm water drainage system discharging to the adjacent site. This connection point is labelled as "Existing surface water manhole to be provided as part of the adjacent Fords Development". It is understood that this manhole has not been constructed and is not existing. The applicant is requested to consider how this manhole is to be constructed as it currently lies within the red line boundary of this application and not the adjacent SHD site. The applicant is requested to clarify the red line boundaries between the sites (evidence of agreement with the adjacent site for the proposed storm water connection would be required).

Response: Due to the change in vehicle access to be via Street C, the red line boundary has extended to overlap with the SHD extents. A letter of agreement from the site owner of the adjacent SHD has been granted to agree to the connection of the surface water drainage to the drainage network within the adjacent SHD development.

Registered Office

Ormond House Upper Ormond Quay Dublin 7, Ireland D07 W704

+ 353 1 400 4000 www.dbfl.ie Cork Office 14 South Mall Cork, Ireland T12 CT91

+ 353 21 202 4538

Calway Office Odeon House 7 Eyre Square Galway, Ireland H91 YNC8

+353 91 335599

Waterford Office Suite 8b The Atrium Maritana Gate, Canada St Waterford, Ireland X91 W028

+ 353 51 309 500

DBFL Consulting Engineers Limited trading as DBFL Consulting Engineers

As shown on the Site Services Layout drawing, it is proposed to discharge 5l/s to the drainage system of the adjacent site. No details or calculations for this discharge rate are included in the Infrastructure Design Report. The impact of discharging at 5l/s to the drainage system of the adjacent site has not been addressed or assessed in the Infrastructure Design Report. The applicant is requested to provide full details of same and to revise and update the report.

Response: Please refer to Section 5.4 of DBFL report 240002-X-X-X-XXX-RP-DBFL-CE-0001 Infrastructure Design Report for response.

No details or calculations have been provided for any SuDS or NBS feature other than the attenuation tank. Further consideration should be given to provide full designs and calculations for the drainage network, including each of the SuDS features, detailing their infiltration, storage or attenuation contribution to limiting site run-off (i.e. green roof / rain garden / bio retention area / permeable paving).

Response: Although the buildup within the SuDS elements will provide a level of storage there is no flow control provided on the SuDS elements and as such the storage volumes cannot be accurately determined especially in larger rainfall events. The SuDS elements are designed to temporarily store the everyday rainfall event but in larger rainfall events the runoff will overflow back into the main drainage network and be stored in proposed attenuation tank which has been designed for the 100 year storm event plus climate change as well as the tidal locked event. Therefore, the incorporation of the above SUDS elements will provide a sustainable way to slow down and disperse surface water from the site and provide treatment of run-off and subsequent improvement of discharge quality. Treatment volume and interception volume calculations have been provided for the proposed SuDS features, however, no storage is accounted for in the calculations. Please refer to Section 5.9 and 5.10 and Appendix D of DBFL report 240002-X-X-X-XXX-RP-DBFL-CE-0001 Infrastructure Design Report for further information.

 The applicant is requested to clarify if, and how, the proposed storm water drainage system takes account of tide locking during storm events.

Response: It is proposed to discharge the subject site's surface water network into the adjacent development (Ref. ABP-309059). The surface water strategy of the adjacent development has both been designed to cater for the runoff area of the subject site and to account for a tidal lock event. Please refer to Section 5.4 of DBFL report 240002-X-X-X-XXX-RP-DBFL-CE-0001 Infrastructure Design Report for further information.

It is noted that the proposed attenuation tank is a geo-cellular system (i.e. StormTech). The applicant is
requested to clarify that the proposed system is suitable for use in areas of groundwater and the storage
capacity of the tank will not be reduced due to groundwater.

Registered Office Ormond House Upper Ormond Quay Dublin 7, Ireland D07 W704

+ 353 1 400 4000 www.dbfl.ie Cork Office 14 South Mall Cork, Ireland TT2 CT91

+ 353 21 202 4538

Galway Office Odeon House 7 Eyre Square Galway, Ireland H91 YNC8

+353 91 335599

Waterford Office Suite 8b The Atrium Maritana Gate, Canada St Waterford, Ireland X91 W028

+ 353 51 309 500

DBFL Consulting Engineers Limited trading as DBFL Consulting Engineers

Response: The proposed tank type was selected to provide another level of filtration but will be lined to protect against ingress of groundwater and potential contamination via infiltration. Please refer to Section 5.4 of DBFL report 240002-X-X-X-XXX-RP-DBFL-CE-0001 Infrastructure Design Report for further information.

The applicant is requested to clarify if it is intended for the development to be taken in charge, and, if so, details of the proposed areas to be taken in charge should be submitted. Please note that where a development is to be taken in charge, all attenuation tanks shall be concrete and permeable paving is not permitted.

Response: It is not proposed to have the proposed development taken in charge.

c) The applicant is requested to provide further consideration of, and possible amendment to, the documents and/or design proposals in respect of the proposed flood risk management arrangements of the development, with particular focus on the following:

- As per Section 11.266 of the City Development Plan, applications for vulnerable development in flood risk zones, including within Flood Zones A and B in the City Centre and the Dockland areas and in areas at risk under the OPW's Mid-Range Future Scenario, shall provide details of structural and non structural risk management measures to include, but not be limited to specifications of the following:
 - Floor Levels
 - Internal Layout
 - Flood-Resistant Construction
 - Emergency Response Planning

The above items should be addressed and detailed in the Flood Risk Assessment.

Response: Please refer DBFL report 240002-X-X-X-XXX-RP-DBFL-CE-0002 Site Specific Flood Risk Assessment for details.

Section 10.120 of the City Development Plan highlights that maintaining the aquitard function provided by the existing alluvium soil layer has been identified as a key requirement of the proposed redevelopment of the South Docks. Further consideration is required to detail how no new flow paths will be created and that an equivalent aquitard function is maintained post development. Also, the depth of the aquitard should be highlighted on the foul and surface water drainage long sections submitted as part of the Planning Application.

Registered Office

Ormond House Upper Ormond Quay Dublin 7, Ireland D07 W704

+ 353 1 400 4000 www.dbfl.ie Cork Office 14 South Mall Cork, Ireland TT2 CT91

+ 353 21 202 4538

7 Eyre Square Galway, Ireland H91 YNC8

+353 91 335599

Galway Office

Odeon House

Waterford Office Suite 8b The Atrium Maritana Gate, Canada St Waterford, Ireland X91 W028

+ 353 51 309 500

DBFL Consulting Engineers Limited trading as DBFL Consulting Engineers

Response: Refer to DBFL drawing 240002-X-05-X-XXX-DR-DBFL-CE-3301 Drainage Longitudinal Sections for details.

- Chapter 5 of the Site Specific Flood Risk Assessment submitted is titled "Stage 3 Detailed Flood Risk Assessment & Management". This Site Specific Flood Risk Assessment does not meet the requirements of a Stage 3 Detailed Flood Risk Assessment as per the Flood Risk Management Guidelines. A Stage 3 assessment assesses flood risk issues in sufficient detail and provides a quantitative appraisal of potential flood risk to a proposed or existing development or land to be zoned, of its potential impact on flood risk elsewhere and of the effectiveness of any proposed mitigation measures.

Response: Please refer to section 5 of DBFL report 240002-X-X-X-XXX-RP-DBFL-CE-0002 Site Specific Flood Risk Assessment for details.

12. Consideration of the proposals to address the following Construction and Demolition related requirements (as set out in the Environment Report attached in Appendix C):

b) The applicant is requested to submit a Construction and Environmental Management plan with any planning application

Response: Please refer to DBFL report 240002-X-X-X-XXX-RP-DBFL-CE-0003 Construction and Environmental Management Plan.

Registered Office

Ormond House Upper Ormond Quay Dublin 7, Ireland D07 W704

+ 353 1 400 4000 www.dbfl.ie Cork Office

14 South Mall Cork, Ireland T12 CT91

+ 353 21 202 4538

Calway Office Odeon House 7 Eyre Square Galway, Ireland H91 YNC8

+353 91 335599

Waterford Office

Suite 8b The Atrium Maritana Gate, Canada St Waterford, Ireland X91 W028

+ 353 51 309 500

DBFL Consulting Engineers Limited trading as DBFL Consulting Engineers

Dublin Office

Ormond House Upper Ormond Quay Dublin 7, Ireland D07 W704

+ 353 1 400 4000 info@dbfl.ie www.dbfl.ie

Cork Office

14 South Mall Cork, Ireland T12 CT91

+ 353 21 202 4538 info@dbfl.ie www.dbfl.ie

Galway Office

Odeon House 7 Eyre Square Galway, Ireland H91 YNC8

+ 353 91 33 55 99 info@dbfl.ie www.dbfl.ie

Waterford Office

Suite 8b The Atrium Maritana Gate, Canada St Waterford, Ireland X91 W028

+ 353 51 309 500 info@dbfl.ie www.dbfl.ie

